HLA-A*02:01 presenting "HMTEVVRHC" to Alpha/Beta T cell receptor at 3.33Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-A*02:01
HMTEVVRHC
TRAV6
TRBV11
Species
Locus / Allele group
T cell receptors (TCRs) employ diverse strategies to target a p53 cancer neoantigen.
Adoptive cell therapy with tumor-specific T cells can mediate durable cancer regression. The prime target of tumor-specific T cells are neoantigens arising from mutations in self-proteins during malignant transformation. To understand T cell recognition of cancer neoantigens at the atomic level, we studied oligoclonal T cell receptors (TCRs) that recognize a neoepitope arising from a driver mutation in the p53 oncogene (p53R175H) presented by the major histocompatibility complex class I molecule HLA-A2. We previously reported the structures of three p53R175H-specific TCRs (38-10, 12-6, and 1a2) bound to p53R175H and HLA-A2. The structures showed that these TCRs discriminate between WT and mutant p53 by forming extensive interactions with the R175H mutation. Here, we report the structure of a fourth p53R175H-specific TCR (6-11) in complex with p53R175H and HLA-A2. In contrast to 38-10, 12-6, and 1a2, TCR 6-11 makes no direct contacts with the R175H mutation, yet is still able to distinguish mutant from WT p53. Structure-based in silico mutagenesis revealed that the 60-fold loss in 6-11 binding affinity for WT p53 compared to p53R175H is mainly due to the higher energetic cost of desolvating R175 in the WT p53 peptide during complex formation than H175 in the mutant. This indirect strategy for preferential neoantigen recognition by 6-11 is fundamentally different from the direct strategies employed by other TCRs and highlights the multiplicity of solutions to recognizing p53R175H with sufficient selectivity to mediate T cell killing of tumor but not normal cells.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
HIS
TRP167
PHE33
MET5
TYR171
GLU63
TYR159
TYR59
LYS66
THR163
TYR7
|
P2
MET
TYR159
LYS66
HIS70
MET45
TYR7
VAL67
MET5
PHE9
GLU63
TYR99
|
P3
THR
HIS70
TYR99
TYR159
LYS66
LEU156
|
P4
GLU
LYS66
TYR159
ARG65
|
P5
VAL
GLN155
VAL152
LEU156
|
P6
VAL
ALA69
ARG97
THR73
HIS70
|
P7
ARG
THR73
VAL152
TRP147
ALA150
ASP77
GLN155
ARG97
|
P8
HIS
TRP147
ASP77
THR143
GLN72
VAL76
THR73
|
P9
CYS
THR80
TYR84
TRP147
THR142
THR143
TYR123
TYR116
LYS146
LEU81
ASP77
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
PHE9
TYR99
|
C Pocket
HIS70
THR73
HIS74
PHE9
ARG97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ARG97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
VAL95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*02:01
IPD-IMGT/HLA
[ipd-imgt:HLA35266] |
10 20 30 40 50 60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDG 130 140 150 160 170 180 KDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWE |
3. Peptide
|
HMTEVVRHC
|
4. T cell receptor alpha
T cell receptor alpha
TRAV6
|
10 20 30 40 50 60
MSQKIEQNSEALNIQEGKTATLTCNYTNYSPAYLQWYRQDPGRGPVFLLLIRENEKEKRK 70 80 90 100 110 120 ERLKVTFDTTLKQSLFHITASQPADSATYLCALDIYPHDMRFGAGTRLTVKPNIQNPDPA 130 140 150 160 170 180 VYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNK 190 200 SDFACANAFNNSIIPEDTFFPSPESS |
5. T cell receptor beta
T cell receptor beta
TRBV11
|
10 20 30 40 50 60
MEAGVAQSPRYKIIEKRQSVAFWCNPISGHATLYWYQQILGQGPKLLIQFQNNGVVDDSQ 70 80 90 100 110 120 LPKDRFSAERLKGVDSTLKIQPAKLEDSAVYLCASSLDPGDTGELFFGEGSRLTVLEDLK 130 140 150 160 170 180 NVFPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLK 190 200 210 220 230 240 EQPALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAE AWGRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.