HLA-A*03:01 with Peptide Loading Complex at 3.73Å resolution
Data provenance
Information sections
Complex type
HLA-A*03:01
Species
Locus / Allele group
Molecular basis of MHC I quality control in the peptide loading complex.
Major histocompatibility complex class I (MHC I) molecules are central to adaptive immunity. Their assembly, epitope selection, and antigen presentation are controlled by the MHC I glycan through a sophisticated network of chaperones and modifying enzymes. However, the mechanistic integration of the corresponding processes remains poorly understood. Here, we determine the multi-chaperone-client interaction network of the peptide loading complex (PLC) and report the PLC editing module structure by cryogenic electron microscopy at 3.7 Å resolution. Combined with epitope-proofreading studies of the PLC in near-native lipid environment, these data show that peptide-receptive MHC I molecules are stabilized by multivalent chaperone interactions including the calreticulin-engulfed mono-glucosylated MHC I glycan, which only becomes accessible for processing by α-glucosidase II upon loading of optimal epitopes. Our work reveals allosteric coupling between peptide-MHC I assembly and glycan processing. This inter-process communication defines the onset of an adaptive immune response and provides a prototypical example of the tightly coordinated events in endoplasmic reticulum quality control.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
A Pocket
TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
ASN66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
ASN66
VAL67
TYR7
GLN70
PHE9
TYR99
|
C Pocket
GLN70
THR73
ASP74
PHE9
ILE97
|
D Pocket
ARG114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
ARG114
TRP147
GLU152
LEU156
ILE97
|
F Pocket
ASP116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
ILE95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Calreticulin
Calreticulin
|
10 20 30 40 50 60
EPAVYFKEQFLDGDGWTSRWIESKHKSDFGKFVLSSGKFYGDEEKDKGLQTSQDARFYAL 70 80 90 100 110 120 SASFEPFSNKGQTLVVQFTVKHEQNIDCGGGYVKLFPNSLDQTDMHGDSEYNIMFGPDIC 130 140 150 160 170 180 GPGTKKVHVIFNYKGKNVLINKDIRCKDDEFTHLYTLIVRPDNTYEVKIDNSQVESGSLE 190 200 210 220 230 240 DDWDFLPPKKIKDPDASKPEDWDERAKIDDPTDSKPEDWDKPEHIPDPDAKKPEDWDEEM 250 260 270 280 290 300 DGEWEPPVIQNPEYKGEWKPRQIDNPDYKGTWIHPEIDNPEYSPDPSIYAYDNFGVLGLD 310 320 330 340 350 360 LWQVKSGTIFDNFLITNDEAYAEEFGNETWGVTKAAEKQMKDKQDEEQRLKEEEEDKKRK 370 380 390 EEEEAEDKEDDEDKDEDEEDEEDKEEDEEEDVPGQAKDEL |
3. Class I alpha
HLA-A*03:01
IPD-IMGT/HLA
[ipd-imgt:HLA34773] |
10 20 30 40 50 60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DQETRNVKAQSQTDRVDLGTLRGYYNQSEAGSHTIQIMYGCDVGSDGRFLRGYRQDAYDG 130 140 150 160 170 180 KDYIALNEDLRSWTAADMAAQITKRKWEAAHEAEQLRAYLDGTCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 280 290 300 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWELSSQPTIPIVGIIAGLVLLGAVITG 310 320 330 340 AVVAAVMWRRKSSDRKGGSYTQAASSDSAQGSDVSLTACKV |
4. Erp57, Protein disulfide-isomerase A3
Erp57, Protein disulfide-isomerase A3
|
10 20 30 40 50 60
SDVLELTDDNFESRISDTGSAGLMLVEFFAPWCGHCKRLAPEYEAAATRLKGIVPLAKVD 70 80 90 100 110 120 CTANTNTCNKYGVSGYPTLKIFRDGEEAGAYDGPRTADGIVSHLKKQAGPASVPLRTEEE 130 140 150 160 170 180 FKKFISDKDASIVGFFDDSFSEAHSEFLKAASNLRDNYRFAHTNVESLVNEYDDNGEGII 190 200 210 220 230 240 LFRPSHLTNKFEDKTVAYTEQKMTSGKIKKFIQENIFGICPHMTEDNKDLIQGKDLLIAY 250 260 270 280 290 300 YDVDYEKNAKGSNYWRNRVMMVAKKFLDAGHKLNFAVASRKTFSHELSDFGLESTAGEIP 310 320 330 340 350 360 VVAIRTAKGEKFVMQEEFSRDGKALERFLQDYFDGNLKRYLKSEPIPESNDGPVKVVVAE 370 380 390 400 410 420 NFDEIVNNENKDVLIEFYAPWCGHCKNLEPKYKELGEKLSKDPNIVIAKMDATANDVPSP 430 440 450 460 470 480 YEVRGFPTIYFSPANKKLNPKKYEGGRELSDFISYLQREATNPPVIQEEKPKKKKKAQED L |
5. Tapasin
Tapasin
|
10 20 30 40 50 60
GPAVIECWFVEDASGKGLAKRPGALLLRQGPGEPPPRPDLDPELYLSVHDPAGALQAAFR 70 80 90 100 110 120 RYPRGAPAPHCEMSRFVPLPASAKWASGLTPAQNCPRALDGAWLMVSISSPVLSLSSLLR 130 140 150 160 170 180 PQPEPQQEPVLITMATVVLTVLTHTPAPRVRLGQDALLDLSFAYMPPTSEAASSLAPGPP 190 200 210 220 230 240 PFGLEWRRQHLGKGHLLLAATPGLNGQMPAAQEGAVAFAAWDDDEPWGPWTGNGTFWLPR 250 260 270 280 290 300 VQPFQEGTYLATIHLPYLQGQVTLELAVYKPPKVSLMPATLARAAPGEAPPELLCLVSHF 310 320 330 340 350 360 YPSGGLEVEWELRGGPGGRSQKAEGQRWLSALRHHSDGSVSLSGHLQPPPVTTEQHGARY 370 380 390 400 410 420 ACRIHHPSLPASGRSAEVTLEVAGLSGPSLEDSVGLFLSAFLLLGLFKALGWAAVYLSTC KDSKKKAE |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.