HLA-A*02:01 presenting "YLQPRTFLL" to Alpha/Beta T cell receptor at 3.00Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-A*02:01
YLQPRTFLL
TRAV12
TRBV7
Species
Locus / Allele group
Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope.
Since the onset of the pandemic, multiple SARS-CoV-2 variants have emerged with increasing ability to evade neutralizing antibodies. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function and anatomical localization of SARS-CoV-2-specific T cells and their influence in the ability of T cells to protect the host from severe COVID-19 development. The emergence of SARS-CoV-2 variants capable of evading neutralizing antibodies have increased the interest in defining the immunological correlates of disease protection. Bertoletti, Le Bert, and Tan summarize how SARS-CoV-2-specific T cell magnitude, function and anatomical localization can affect the their ability to protect against severe COVID-19.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
TYR
TYR171
TYR159
TYR59
TYR7
PHE33
THR163
GLU63
TRP167
LYS66
MET5
|
P2
LEU
MET45
TYR159
TYR7
VAL67
TYR99
PHE9
LYS66
HIS70
GLU63
|
P3
GLN
TYR99
LYS66
HIS114
GLN155
HIS70
TYR159
LEU156
ARG97
|
P4
PRO
LYS66
TYR159
|
P5
ARG
GLN155
HIS70
ARG97
|
P6
THR
HIS70
THR73
ALA69
LYS66
|
P7
PHE
ARG97
TYR116
TRP147
GLN155
ASP77
HIS114
VAL152
LEU156
THR73
|
P8
LEU
THR143
TRP147
ASP77
LYS146
THR73
VAL76
|
P9
LEU
LYS146
TYR84
THR143
THR142
THR80
TYR116
LEU81
TRP147
ASP77
TYR123
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
PHE9
TYR99
|
C Pocket
HIS70
THR73
HIS74
PHE9
ARG97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ARG97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
VAL95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*02:01
IPD-IMGT/HLA
[ipd-imgt:HLA35266] |
10 20 30 40 50 60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDG 130 140 150 160 170 180 KDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
YLQPRTFLL
|
4. T cell receptor alpha
T cell receptor alpha
TRAV12
|
10 20 30 40 50 60
RKEVEQDPGPFNVPEGATVAFNCTYSNSASQSFFWYRQDCRLEPKLIMSVYSSGNEDGRF 70 80 90 100 110 120 TAQLNRASQYISLLIRDSKLSDSATYLCVVNINTDKLIFGTGTRLQVFPNIQNPDPAVYQ 130 140 150 160 170 180 LRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDF 190 200 ACANAFNNSIIPEDTFFPSPESS |
5. T cell receptor beta
T cell receptor beta
TRBV7
|
10 20 30 40 50 60
DTGVSQDPRHKITKRGQNVTFRCDPISEHNRLYWYRQTLGQGPEFLTYFQNEAQLEKSRL 70 80 90 100 110 120 LSDRFSAERPKGSFSTLEIQRTEQGDSAMYLCASSSANSGELFFGEGSRLTVLEDLKNVF 130 140 150 160 170 180 PPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQP 190 200 210 220 230 240 ALNDSRYALSSRLRVSATFWQDPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWG RAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.