Alpha This is a work in progress and may change. Your feedback is very welcome.
  


7P4B

HLA-E*01:03 binding "IMYNYPAML" at 1.72Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B', 'D', 'F', 'H']
2. Class I alpha
HLA-E*01:03
['A', 'C', 'E', 'G']
3. Peptide
IMYNYPAML
['P', 'Q', 'R', 'Z']

Species


Locus / Allele group


Publication

Primary and secondary functions of HLA-E are determined by stability and conformation of the peptide-bound complexes.

Walters LC, Rozbesky D, Harlos K, Quastel M, Sun H, Springer S, Rambo RP, Mohammed F, Jones EY, McMichael AJ, Gillespie GM
Cell Rep (2022) 39, 110959 [doi:10.1016/j.celrep.2022.110959]  [pubmed:35705051

MHC-E regulates NK cells by displaying MHC class Ia signal peptides (VL9) to NKG2A:CD94 receptors. MHC-E can also present sequence-diverse, lower-affinity, pathogen-derived peptides to T cell receptors (TCRs) on CD8+ T cells. To understand these affinity differences, human MHC-E (HLA-E)-VL9 versus pathogen-derived peptide structures are compared. Small-angle X-ray scatter (SAXS) measures biophysical parameters in solution, allowing comparison with crystal structures. For HLA-E-VL9, there is concordance between SAXS and crystal parameters. In contrast, HLA-E-bound pathogen-derived peptides produce larger SAXS dimensions that reduce to their crystallographic dimensions only when excess peptide is supplied. Further crystallographic analysis demonstrates three amino acids, exclusive to MHC-E, that not only position VL9 close to the α2 helix, but also allow non-VL9 peptide binding with re-configuration of a key TCR-interacting α2 region. Thus, non-VL9-bound peptides introduce an alternative peptide-binding motif and surface recognition landscape, providing a likely basis for VL9- and non-VL9-HLA-E immune discrimination.

Structure deposition and release

Deposited: 2021-07-10
Released: 2022-07-27
Revised: 2022-08-03

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: IMYNYPAML

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 ILE

TYR7
THR163
GLU63
LEU5
TYR159
ARG62
TYR59
TRP167
HIS99
TYR171
P2 MET

TYR7
THR70
SER24
GLU63
SER66
TYR159
MET45
ALA67
HIS9
HIS99
P3 TYR

GLU152
HIS155
TRP97
HIS99
GLN156
TYR159
THR70
P4 ASN

SER66
P5 TYR

ILE73
GLU152
P6 PRO

PHE116
THR70
GLU114
GLU152
PHE74
ILE73
TRP97
P7 ALA

SER147
ALA150
GLU152
ASN77
P8 MET

ASN77
SER143
VAL76
LYS146
ILE73
P9 LEU

THR80
PHE116
LEU81
ASN77
TYR84
SER143
TYR123
LEU95
ILE142
LYS146
LEU124

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
THR163
TRP167
TYR171
LEU5
TYR59
GLU63
SER66
TYR7
B Pocket

SER24
VAL34
MET45
GLU63
SER66
ALA67
TYR7
THR70
HIS9
HIS99
C Pocket

THR70
ILE73
PHE74
HIS9
TRP97
D Pocket

GLU114
HIS155
GLN156
TYR159
LEU160
HIS99
E Pocket

GLU114
SER147
GLU152
GLN156
TRP97
F Pocket

PHE116
TYR123
SER143
LYS146
SER147
ASN77
THR80
LEU81
TYR84
LEU95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-E*01:03
IPD-IMGT/HLA
[ipd-imgt:HLA34202]
        10        20        30        40        50        60
GSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEYW
        70        80        90       100       110       120
DRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCELGPDGRFLRGYEQFAYDG
       130       140       150       160       170       180
KDYLTLNEDLRSWTAVDTAAQISEQKSNDASEAEHQRAYLEDTCVEWLHKYLEKGKETLL
       190       200       210       220       230       240
HLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVETRPAGDGT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPEPVTLRWKPP

3. Peptide
IMYNYPAML


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 7P4B assembly 1  
  2. 7P4B assembly 2  
  3. 7P4B assembly 3  
  4. 7P4B assembly 4  

Components

MHC Class I alpha chain [cif]
  1. 7P4B assembly 1  
  2. 7P4B assembly 2  
  3. 7P4B assembly 3  
  4. 7P4B assembly 4  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 7P4B assembly 1  
  2. 7P4B assembly 2  
  3. 7P4B assembly 3  
  4. 7P4B assembly 4  
Peptide only [cif]
  1. 7P4B assembly 1  
  2. 7P4B assembly 2  
  3. 7P4B assembly 3  
  4. 7P4B assembly 4  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/7p4b

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes