HLA-E*01:03 presenting "RMYSPVSIL" to Alpha/Beta T cell receptor at 2.90Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-E*01:03
RMYSPVSIL
Species
Locus / Allele group
Structure-guided stabilization of pathogen-derived peptide-HLA-E complexes using non-natural amino acids conserves native TCR recognition.
The nonpolymorphic class Ib molecule, HLA-E, primarily presents peptides from HLA class Ia leader peptides, providing an inhibitory signal to NK cells via CD94/NKG2 interactions. Although peptides of pathogenic origin can also be presented by HLA-E to T cells, the molecular basis underpinning their role in antigen surveillance is largely unknown. Here, we solved a co-complex crystal structure of a TCR with an HLA-E presented peptide (pHLA-E) from bacterial (Mycobacterium tuberculosis) origin, and the first TCR-pHLA-E complex with a noncanonically presented peptide from viral (HIV) origin. The structures provided a molecular foundation to develop a novel method to introduce cysteine traps using non-natural amino acid chemistry that stabilized pHLA-E complexes while maintaining native interface contacts between the TCRs and different pHLA-E complexes. These pHLA-E monomers could be used to isolate pHLA-E-specific T cells, with obvious utility for studying pHLA-E restricted T cells, and for the identification of putative therapeutic TCRs.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
A Pocket
ALA159
ASP163
GLU167
LYS171
SER5
GLU59
ARG63
ARG66
LYS7
|
B Pocket
ILE24
PHE34
ARG45
ARG63
ARG66
SER67
LYS7
ASP70
PHE9
MET99
|
C Pocket
ASP70
GLN73
ILE74
PHE9
GLN97
|
D Pocket
TYR114
GLU155
HIS156
ALA159
TYR160
MET99
|
E Pocket
TYR114
LYS147
SER152
HIS156
GLN97
|
F Pocket
GLN116
ASP123
ILE143
GLN146
LYS147
VAL77
ARG80
THR81
GLY84
THR95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-E*01:03
IPD-IMGT/HLA
[ipd-imgt:HLA34202] |
10 20 30 40 50 60
MGSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEY 70 80 90 100 110 120 WDRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCELGPDGRFLRGYEQCAYD 130 140 150 160 170 180 GKDYLTLNEDLRSWTAVDTAAQISEQKSNDASEAEHQRAYLEDTCVEWLHKYLEKGKETL 190 200 210 220 230 240 LHLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVETRPAGDG 250 260 270 TFQKWAAVVVPSGEEQRYTCHVQHEGLPEPVTLRWKP |
4. Peptide
|
RMYSPVSIL
|
5. T cell receptor alpha
T cell receptor alpha
|
10 20 30 40 50 60
MLAKTTQPISMDSYEGQEVNITCSHNNIATNDYITWYQQFPSQGPRFIIQGYKTKVTNEV 70 80 90 100 110 120 ASLFIPADRKSSTLSLPRVSLSDTAVYYCLVGSSFNQGGKLIFGQGTELSVKPNIQNPDP 130 140 150 160 170 180 AVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSN 190 KSDFACANAFNNSIIPEDT |
6. T cell receptor beta
T cell receptor beta
|
10 20 30 40 50 60
MDTGVSQNPRHKITKRGQNVTFRCDPISEHNRLYWYRQTLGQGPEFLTYFQNEAQLEKSR 70 80 90 100 110 120 LLSDRFSAERPKGSFSTLEIQRTEQGDSAMYLCASSLGREYGYTFGSGTRLTVVEDLNKV 130 140 150 160 170 180 FPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQ 190 200 210 220 230 240 PALNDSRYALSSRLRVSATFWQDPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAW GRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.