HLA-A*24:02 binding "YFSPIRVTF" at 1.51Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-A*24:02
YFSPIRVTF
Species
Locus / Allele group
CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph.
Background
The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts.Methods
We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an initial draft of the guidelines which were then extensively tested and reviewed by external groups.Results
We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants.Conclusions
These recommendations aim to increase the number and range of non-coding region variants that can be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the discovery of novel disease mechanisms.Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
TYR
ARG170
GLU55
TYR159
TYR59
TYR7
LYS66
GLY167
PHE99
MET5
ASP166
GLU63
THR163
TYR171
|
P2
PHE
SER9
MET97
VAL67
MET45
PHE99
ALA24
GLU63
PHE22
HIS70
TYR159
TYR7
LYS66
|
P3
SER
TYR159
LYS66
PHE99
GLN156
|
P4
PRO
TYR159
LYS66
|
P5
ILE
VAL152
HIS70
TYR159
GLN155
GLN156
|
P6
ARG
ALA69
THR73
HIS70
GLY65
LYS66
|
P7
VAL
TRP147
TYR116
THR73
ASN77
GLN155
VAL152
|
P8
THR
GLU76
ILE80
THR73
ASN77
TRP147
LYS146
THR143
|
P9
PHE
ILE142
LYS146
THR143
TYR116
ALA81
TYR123
ILE80
TYR84
ASN77
TRP147
LEU95
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
GLY167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
SER9
PHE99
|
C Pocket
HIS70
THR73
ASP74
SER9
MET97
|
D Pocket
HIS114
GLN155
GLN156
TYR159
LEU160
PHE99
|
E Pocket
HIS114
TRP147
VAL152
GLN156
MET97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
ASN77
ILE80
ALA81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*24:02
IPD-IMGT/HLA
[ipd-imgt:HLA34790] |
10 20 30 40 50 60
GSHSMRYFSTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DEETGKVKAHSQTDRENLRIALRYYNQSEAGSHTLQMMFGCDVGSDGRFLRGYHQYAYDG 130 140 150 160 170 180 KDYIALKEDLRSWTAADMAAQITKRKWEAAHVAEQQRAYLEGTCVDGLRRYLENGKETLQ 190 200 210 220 230 240 RTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEPSS |
3. Peptide
|
YFSPIRVTF
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.