H2-Db presenting "ASNENMETM" to Alpha/Beta T cell receptor at 3.02Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
H2-Db
ASNENMETM
TRAV14
TRBV17
Species
Locus / Allele group
Canonical T cell receptor docking on peptide-MHC is essential for T cell signaling.
T cell receptor (TCR) recognition of peptide-major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using "reversed-docking" TCRβ-variable (TRBV) 17+ TCRs from the naïve mouse CD8+ T cell repertoire that recognizes the H-2Db-NP366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR-pMHCI binding or clustering characteristics. Canonical TCR-pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR-pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR-pMHC docking topology is mandated by T cell signaling constraints.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ALA
TYR59
LYS66
GLU163
TYR7
GLU63
PHE33
MET5
TYR171
TYR159
TRP167
|
P2
SER
TYR159
TYR7
LYS66
TYR45
GLU163
GLU63
|
P3
ASN
GLN70
TYR156
HIS155
TYR159
GLU9
LYS66
|
P4
GLU
GLY69
TYR156
LYS66
GLN65
GLN70
|
P5
ASN
TYR156
TRP73
PHE74
PHE116
GLN97
GLU9
GLN70
|
P6
MET
TRP73
ALA152
TYR156
HIS155
|
P7
GLU
TRP73
TRP147
SER150
LYS146
|
P8
THR
THR143
ASN80
TRP147
SER77
LYS146
VAL76
TRP73
|
P9
MET
TYR123
LYS146
PHE116
THR143
LEU81
SER77
ASN80
ILE124
TRP147
LEU95
ILE142
TYR84
TRP73
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ALA159
ALA163
THR167
TRP171
ALA5
ARG59
ASP63
ASN66
ARG7
|
B Pocket
ALA24
THR34
ARG45
ASP63
ASN66
PRO67
ARG7
GLU70
LEU9
ARG99
|
C Pocket
GLU70
ALA73
PRO74
LEU9
TRP97
|
D Pocket
GLY114
LYS155
THR156
ALA159
ALA160
ARG99
|
E Pocket
GLY114
TYR147
GLU152
THR156
TRP97
|
F Pocket
SER116
SER123
GLU143
ASP146
TYR147
GLU77
GLY80
PRO81
TRP84
GLU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
H2-Db
|
10 20 30 40 50 60
MGAMAPRTLLLLLAAALAPTQTRAGPHSMRYFETAVSRPGLEEPRYISVGYVDNKEFVRF 70 80 90 100 110 120 DSDAENPRYEPRAPWMEQEGPEYWERETQKAKGQEQWFRVSLRNLLGYYNQSAGGSHTLQ 130 140 150 160 170 180 QMSGCDLGSDWRLLRGYLQFAYEGRDYIALNEDLKTWTAADMAAQITRRKWEQSGAAEHY 190 200 210 220 230 240 KAYLEGECVEWLHRYLKNGNATLLRTDSPKAHVTHHPRSKGEVTLRCWALGFYPADITLT 250 260 270 280 290 300 WQLNGEELTQDMELVETRPAGDGTFQKWASVVVPLGKEQNYTCRVYHEGLPEPLTLRWEP 310 320 330 340 350 360 PPSTDSYMVIVAVLGVLGAMAIIGAVVAFVMKRRRNTGGKGGDYALAPGSQSSEMSLRDC KA |
3. Peptide
|
ASNENMETM
|
4. T cell receptor alpha
T cell receptor alpha
TRAV14
|
10 20 30 40 50 60
QQQVRQSPQSLTVWEGETAILNCSYEDSTFNYFPWYQQFPGEGPALLISIRSVSDKKEDG 70 80 90 100 110 120 RFTIFFNKREKKLSLHITDSQPGDSATYFCAASETSGSWQLIFGSGTTVSVSPNIQNPDP 130 140 150 160 170 180 AVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSN 190 200 KSDFACANAFNNSIIPEDTFFPSPESS |
5. T cell receptor beta
T cell receptor beta
TRBV17
|
10 20 30 40 50 60
DTTVKQNPRYKLARVGKPVNLICSQTMNHDTMYWYQKKPNQAPKLLLFYYDKILNREADT 70 80 90 100 110 120 FEKFQSSRPNNSFCSLYIGSAGLEYSAMYLCASSRDLGRDTQYFGPGTRLTVLEDLKNVF 130 140 150 160 170 180 PPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQP 190 200 210 220 230 240 ALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWG RAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.