HLA-B*42:01 presenting "TPQDLNTML" to Alpha/Beta T cell receptor at 2.63Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-B*42:01
TPQDLNTML
TRAV26
TRBV12
Species
Locus / Allele group
Cross-reactive TCR with alloreactivity for immunodominant HIV-1 epitope Gag TL9 with enhanced control of viral infection
ABSTRACT
Although both HLA B*81:01 and HLA B*42:01 are members of the B7 supertype and can present many of the same HIV-1 epitopes, the identification of a dual-reactive T-cell phenotype was unexpected, since structural data suggested that TL9 peptide binds to each allele in a distinct conformation. How the dual-reactive TCR recognizes these radically distinct p-MHC surfaces is revealed by our structural study, that the introduction of TCR T18A induces a molecular switch of the TL9 peptide in B4201 to approach its conformation in B8101. Most importantly, unique docking of CDR3β towards MHC but not peptide ligand strengthens the peptide tolerance of T18A, extends the ability of TCR to adapt mutations. Moreover, the high affinity of dual-reactive TCR for WT and escape mutant TL9 highlights the functional advantage of the alloreactive phenotype.Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
THR
TYR61
ARG64
THR165
ASN65
TRP169
MET7
PHE35
TYR173
TYR9
TYR161
|
P2
PRO
GLU47
ILE68
TYR101
TYR161
TYR69
ASN65
TYR11
TYR9
|
P3
GLN
ASP158
TYR11
TYR101
TYR161
TYR118
ILE68
ASN116
|
P4
ASP
TYR161
ILE68
ARG64
|
P5
LEU
ASP158
GLN157
GLN72
ILE68
|
P6
ASN
GLN72
THR75
ALA71
|
P7
THR
TYR118
GLN72
ASP76
THR75
VAL154
ASP158
SER79
TRP149
|
P8
MET
ASN82
LYS148
THR75
TRP149
SER79
GLU78
|
P9
LEU
TYR118
TYR125
LEU83
ASN82
LEU97
TYR86
SER79
LYS148
TRP149
THR145
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ARG159
GLU163
VAL167
ARG171
HIS5
PRO59
ASP63
THR66
MET7
|
B Pocket
PHE24
GLN34
PRO45
ASP63
THR66
GLN67
MET7
LYS70
TYR9
SER99
|
C Pocket
LYS70
ALA73
GLN74
TYR9
LEU97
|
D Pocket
GLY114
ALA155
GLU156
ARG159
ALA160
SER99
|
E Pocket
GLY114
ARG147
ALA152
GLU156
LEU97
|
F Pocket
ASN116
LYS123
GLN143
GLN146
ARG147
ARG77
LEU80
ARG81
ARG84
HIS95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*42:01
IPD-IMGT/HLA
[ipd-imgt:HLA34781] |
10 20 30 40 50 60
MGGSHSMRYFYTSVSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPE 70 80 90 100 110 120 YWDRNTQIYKAQAQTDRESLRNLRGYYNQSEAGSHTLQSMYGCDVGPDGRLLRGHNQYAY 130 140 150 160 170 180 DGKDYIALNEDLRSWTAADTAAQITQRKWEAARVAEQDRAYLEGTCVEWLRRYLENGKDT 190 200 210 220 230 240 LERADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGD 250 260 270 RTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEPS |
3. Peptide
|
TPQDLNTML
|
4. T cell receptor alpha
T cell receptor alpha
TRAV26
|
10 20 30 40 50 60
MGDAKTTQPPSMDCAEGRAANLPCNHSTISGNEYVYWYRQIHSQGPQYIIHGLKNNETNE 70 80 90 100 110 120 MASLIITEDRKSSTLILPHATLRDTAVYYCIVRGLNNAGNMLTFGGGTRLMVKPDIQNPD 130 140 150 160 170 180 PAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWS 190 200 NKSDFACANAFNNSIIPEDTFFPS |
5. T cell receptor beta
T cell receptor beta
TRBV12
|
10 20 30 40 50 60
MGDAGVIQSPRHEVTEMGQEVTLRCKPISGHNSLFWYRQTMMRGLELLIYFNNNVPIDDS 70 80 90 100 110 120 GMPEDRFSAKMPNASFSTLKIQPSEPRDSAVYFCASSLGIDAIYFGEGSWLTVVEDLKNV 130 140 150 160 170 180 FPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQ 190 200 210 220 230 240 PALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAW GRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.