HLA-B*81:01 presenting "TPQDLNTML" to Alpha/Beta T cell receptor at 2.25Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-B*81:01
TPQDLNTML
TRAV26
TRBV12
Species
Locus / Allele group
Cross-reactive TCR with alloreactivity for immunodominant HIV-1 epitope Gag TL9 with enhanced control of viral infection
ABSTRACT
Although both HLA B*81:01 and HLA B*42:01 are members of the B7 supertype and can present many of the same HIV-1 epitopes, the identification of a dual-reactive T-cell phenotype was unexpected, since structural data suggested that TL9 peptide binds to each allele in a distinct conformation. How the dual-reactive TCR recognizes these radically distinct p-MHC surfaces is revealed by our structural study, that the introduction of TCR T18A induces a molecular switch of the TL9 peptide in B4201 to approach its conformation in B8101. Most importantly, unique docking of CDR3β towards MHC but not peptide ligand strengthens the peptide tolerance of T18A, extends the ability of TCR to adapt mutations. Moreover, the high affinity of dual-reactive TCR for WT and escape mutant TL9 highlights the functional advantage of the alloreactive phenotype.Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
THR
PHE35
TRP169
TYR61
ARG64
TYR173
TYR161
GLU165
ASN65
TYR9
MET7
|
P2
PRO
TYR9
TYR161
ASN65
TYR101
TYR11
ILE68
GLU47
TYR69
|
P3
GLN
TYR161
GLN72
TYR11
ASN116
LEU158
TYR101
TYR118
ILE68
|
P4
ASP
ILE68
TYR161
|
P5
LEU
GLN72
GLN157
LEU158
ILE68
TYR161
|
P6
ASN
ALA71
GLN72
THR75
|
P7
THR
ASP76
TYR118
THR75
SER79
VAL154
GLN72
LEU149
|
P8
MET
SER79
GLU78
ASN82
LEU149
THR75
LYS148
|
P9
LEU
SER145
TYR86
LEU149
SER79
ILE126
LYS148
TYR118
TYR125
LEU83
ASN82
LEU97
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ALA159
GLY163
GLU167
ARG171
SER5
GLU59
ARG63
GLN66
ARG7
|
B Pocket
ILE24
PHE34
ARG45
ARG63
GLN66
ILE67
ARG7
ALA70
PHE9
MET99
|
C Pocket
ALA70
GLN73
THR74
PHE9
GLN97
|
D Pocket
HIS114
GLU155
GLN156
ALA159
TYR160
MET99
|
E Pocket
HIS114
LYS147
ARG152
GLN156
GLN97
|
F Pocket
GLN116
ASP123
ILE143
ARG146
LYS147
GLU77
ARG80
ASN81
GLY84
THR95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*81:01
IPD-IMGT/HLA
[ipd-imgt:HLA24269] |
10 20 30 40 50 60
GGSHSMRYFYTSVSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPEY 70 80 90 100 110 120 WDRNTQIYKAQAQTDRESLRNLRGYYNQSEAGSHTLQSMYGCDVGPDGRLLRGHNQYAYD 130 140 150 160 170 180 GKDYIALNEDLRSWTAADTAAQISQRKLEAARVAEQLRAYLEGECVEWLRRYLENGKDKL 190 200 210 220 230 240 ERADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDR 250 260 270 TFQKWTAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEPS |
3. Peptide
|
TPQDLNTML
|
4. T cell receptor alpha
T cell receptor alpha
TRAV26
|
10 20 30 40 50 60
MGDAKTTQPPSMDCAEGRAANLPCNHSTISGNEYVYWYRQIHSQGPQYIIHGLKNNETNE 70 80 90 100 110 120 MASLIITEDRKSSTLILPHATLRDTAVYYCIVRGLNNAGNMLTFGGGTRLMVKPDIQNPD 130 140 150 160 170 180 PAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWS 190 200 NKSDFACANAFNNSIIPEDTFFPSPEL |
5. T cell receptor beta
T cell receptor beta
TRBV12
|
10 20 30 40 50 60
AGVIQSPRHEVTEMGQEVTLRCKPISGHNSLFWYRQTMMRGLELLIYFNNNVPIDDSGMP 70 80 90 100 110 120 EDRFSAKMPNASFSTLKIQPSEPRDSAVYFCASSLGIDAIYFGEGSWLTVVEDLKNVFPP 130 140 150 160 170 180 EVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPAL 190 200 210 220 230 240 NDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWGRA D |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.