HLA-E*01:03 binding "VMAPRTVLL" with antibody at 1.80Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and antibody
HLA-E*01:03
VMAPRTVLL
Species
Locus / Allele group
Mouse and human antibodies bind HLA-E-leader peptide complexes and enhance NK cell cytotoxicity.
The non-classical class Ib molecule human leukocyte antigen E (HLA-E) has limited polymorphism and can bind HLA class Ia leader peptides (VL9). HLA-E-VL9 complexes interact with the natural killer (NK) cell receptors NKG2A-C/CD94 and regulate NK cell-mediated cytotoxicity. Here we report the isolation of 3H4, a murine HLA-E-VL9-specific IgM antibody that enhances killing of HLA-E-VL9-expressing cells by an NKG2A+ NK cell line. Structural analysis reveal that 3H4 acts by preventing CD94/NKG2A docking on HLA-E-VL9. Upon in vitro maturation, an affinity-optimized IgG form of 3H4 showes enhanced NK killing of HLA-E-VL9-expressing cells. HLA-E-VL9-specific IgM antibodies similar in function to 3H4 are also isolated from naïve B cells of cytomegalovirus (CMV)-negative, healthy humans. Thus, HLA-E-VL9-targeting mouse and human antibodies isolated from the naïve B cell antibody pool have the capacity to enhance NK cell cytotoxicity.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
VAL
THR163
TYR7
TYR171
LEU5
TYR159
TYR59
GLU63
TRP167
|
P2
MET
TYR159
MET45
ALA67
HIS9
HIS99
GLU63
TYR7
SER24
SER66
THR70
|
P3
ALA
THR70
GLN156
SER66
TYR159
TRP97
HIS99
|
P4
PRO
TYR159
ARG62
SER66
|
P5
ARG
GLN156
ALA150
GLU152
TRP97
HIS155
|
P6
THR
ILE73
PHE74
PHE116
THR70
GLN156
GLU152
TRP97
|
P7
VAL
TRP133
ILE73
SER147
GLN156
ASN77
PHE116
GLU152
GLU114
LEU124
|
P8
LEU
SER147
LYS146
ASN77
GLU152
ILE73
VAL76
|
P9
LEU
ILE142
LYS146
ASN77
THR80
PHE116
LEU81
LEU124
TYR84
SER143
TYR123
LEU95
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
TRP167
TYR171
LEU5
TYR59
GLU63
SER66
TYR7
|
B Pocket
SER24
VAL34
MET45
GLU63
SER66
ALA67
TYR7
THR70
HIS9
HIS99
|
C Pocket
THR70
ILE73
PHE74
HIS9
TRP97
|
D Pocket
GLU114
HIS155
GLN156
TYR159
LEU160
HIS99
|
E Pocket
GLU114
SER147
GLU152
GLN156
TRP97
|
F Pocket
PHE116
TYR123
SER143
LYS146
SER147
ASN77
THR80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. ab_heavy
ab_heavy
|
10 20 30 40 50 60
MGWSCIILFLVATATGVHSEVQLQESGPELVKPGASVKIPCKASGYTFTDYNMDWVKQSH 70 80 90 100 110 120 GKSLEWIGDINPNNGGTIYNQKFKGKATLTVDKSSSTAYMELRSLTSEDTAVYYCARPDY 130 140 150 160 170 180 YGSSYGWYFDVWGTGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT 190 200 210 220 230 240 VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV EPKS |
2. ab_light
ab_light
|
10 20 30 40 50 60
MGWSCIILFLVATATGVHSDIVITQSPSSMYASLGERVTITCKASQDINSYLSWFQQKPG 70 80 90 100 110 120 KSPKTLIYRANRLVDGVPSRFSGSGSGQDYSLTISSLEYEDMGIYYCLQYDEFPLTFGAG 130 140 150 160 170 180 TKLELKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE 190 200 210 220 230 SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC |
3. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
4. Class I alpha
HLA-E*01:03
IPD-IMGT/HLA
[ipd-imgt:HLA34202] |
10 20 30 40 50 60
GSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEYW 70 80 90 100 110 120 DRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCELGPDGRFLRGYEQFAYDG 130 140 150 160 170 180 KDYLTLNEDLRSWTAVDTAAQISEQKSNDASEAEHQRAYLEDTCVEWLHKYLEKGKETLL 190 200 210 220 230 240 HLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPEPVTLRWKP |
5. Peptide
|
VMAPRTVLL
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.