H2-Db binding "SGPDNGAVAVL" at 1.55Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
H2-Db
SGPDNGAVAVL
Species
Locus / Allele group
Overlapping Peptides Elicit Distinct CD8+ T Cell Responses following Influenza A Virus Infection.
The presentation of pathogen-derived peptides on MHC class I molecules is essential for the initiation of adaptive CD8+ T cell immunity, which in turn is critical for effective control of many significant human infections. The identification of immunogenic pathogen-derived epitopes and a detailed understanding of how they are recognized by TCRs is essential for the design of effective T cell-based vaccines. In this study, we have characterized the T cell recognition and immune responses in mice to two naturally presented influenza A virus-derived peptides previously identified from virally infected cells via mass spectrometry. These neuraminidase-derived peptides, NA181-190 (SGPDNGAVAV) and NA181-191 (SGPDNGAVAVL), are completely overlapping with the exception of a 1 aa extension at the C terminus of the longer peptide. This minor peptidic difference results in the induction of two completely independent and non-cross-reactive T cell populations that show distinct functional characteristics after influenza A virus infection of B6 mice. We show that the unique TCR reactivity to the overlapping peptides is present in the naive repertoire prior to immune expansion in B6 mice. Moreover, we provide a structural explanation underlying the distinct CD8+ T cell reactivities, which reinforces the concept that peptide length is a key determinant of Ag specificity in CD8+ T cell responses.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
![](https://images.histo.fyi/cleft/side/combined/6x00_1_combined_medium.png)
![](https://images.histo.fyi/cleft/yrb/6x00_1_yrb_medium.png)
![](https://images.histo.fyi/cleft/top/combined/6x00_1_combined_medium.png)
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
SER
PHE33
TYR159
TYR7
MET5
GLU163
TYR59
GLU63
TRP167
LYS66
TYR171
|
P10
VAL
VAL76
LYS146
TRP73
TRP147
SER77
THR143
ASN80
|
P11
LEU
LEU81
SER77
ILE124
ASN80
PHE116
TYR84
THR143
TYR123
LYS146
LEU95
TRP73
TRP147
|
P2
GLY
LYS66
GLU163
GLU63
TYR159
TYR7
|
P3
PRO
TYR159
TYR7
GLN70
LEU114
SER99
TYR156
GLU9
LYS66
GLN97
|
P4
ASP
TYR156
LYS66
HIS155
GLN70
|
P5
ASN
PHE116
GLN70
TYR156
HIS155
PHE74
GLN97
TRP73
|
P6
GLY
TRP73
GLN70
|
P7
ALA
HIS155
|
P8
VAL
TYR156
HIS155
TRP73
ALA152
|
P9
ALA
ALA152
TYR156
SER150
TRP73
LYS146
TRP147
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
![](https://images.histo.fyi/cleft/pockets/labelled/6x00_1_labelled_medium.png)
![](https://images.histo.fyi/cleft/terminii/labelled/6x00_1_labelled_medium.png)
A Pocket
ALA159
GLY163
GLU167
ARG171
SER5
GLU59
ARG63
GLN66
ARG7
|
B Pocket
ILE24
PHE34
ARG45
ARG63
GLN66
LYS67
ARG7
GLY70
PHE9
MET99
|
C Pocket
GLY70
GLN73
TRP74
PHE9
GLN97
|
D Pocket
TYR114
GLU155
HIS156
ALA159
TYR160
MET99
|
E Pocket
TYR114
LYS147
GLY152
HIS156
GLN97
|
F Pocket
GLN116
ASP123
ILE143
ARG146
LYS147
VAL77
ARG80
ASN81
GLY84
THR95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
H2-Db
|
10 20 30 40 50 60
MGPHSMRYFETAVSRPGLEEPRYISVGYVDNKEFVRFDSDAENPRYEPRAPWMEQEGPEY 70 80 90 100 110 120 WERETQKAKGQEQWFRVSLRNLLGYYNQSAGGSHTLQQMSGCDLGSDWRLLRGYLQFAYE 130 140 150 160 170 180 GRDYIALNEDLKTWTAADMAAQITRRKWEQSGAAEHYKAYLEGECVEWLHRYLKNGNATL 190 200 210 220 230 240 LRTDSPKAHVTHHPRSKGEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDG 250 260 270 280 TFQKWASVVVPLGKEQNYTCRVYHEGLPEPLTLRWEPPPST |
3. Peptide
|
SGPDNGAVAVL
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
![Creative Commons Licence](https://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.