HLA-B*07:02 binding "SPNGTIQNIL" at 1.90Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*07:02
SPNGTIQNIL
Species
Locus / Allele group
Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens.
Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
SER
ASN63
TYR171
PHE33
TYR159
TYR59
TYR7
TRP167
MET5
|
P10
LEU
SER77
LEU81
TYR123
ASN80
TRP147
TYR116
LEU95
LYS146
THR143
TYR84
|
P2
PRO
TYR159
TYR7
ILE66
TYR9
TYR67
GLU45
TYR99
ASN63
|
P3
ASN
GLN155
TYR159
ILE66
TYR9
TYR99
ARG156
|
P4
GLY
TYR159
ARG62
ILE66
|
P5
THR
GLN155
|
P6
ILE
ALA69
THR73
|
P7
GLN
GLU152
GLN70
ASP114
TYR99
ARG156
TYR116
THR73
TYR9
|
P8
ASN
GLU152
SER77
ARG156
TRP147
THR73
ALA150
|
P9
ILE
THR73
LYS146
THR143
SER77
GLU76
ASN80
TRP147
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ALA159
GLY163
GLU167
ARG171
SER5
GLU59
ARG63
GLN66
ARG7
|
B Pocket
ILE24
PHE34
ARG45
ARG63
GLN66
ILE67
ARG7
ALA70
PHE9
MET99
|
C Pocket
ALA70
GLN73
THR74
PHE9
GLN97
|
D Pocket
HIS114
GLU155
GLN156
ALA159
TYR160
MET99
|
E Pocket
HIS114
LYS147
ARG152
GLN156
GLN97
|
F Pocket
GLN116
ASP123
ILE143
ARG146
LYS147
GLU77
ARG80
ASN81
GLY84
THR95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MSRSVALAVLALLSLSGLEAIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLL 70 80 90 100 110 KNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*07:02
IPD-IMGT/HLA
[ipd-imgt:HLA34746] |
10 20 30 40 50 60
MGSHSMRYFYTSVSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPEY 70 80 90 100 110 120 WDRNTQIYKAQAQTDRESLRNLRGYYNQSEAGSHTLQSMYGCDVGPDGRLLRGHDQYAYD 130 140 150 160 170 180 GKDYIALNEDLRSWTAADTAAQITQRKWEAAREAEQRRAYLEGECVEWLRRYLENGKDKL 190 200 210 220 230 240 ERADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDR 250 260 270 280 290 TFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEPSSQSGSLHHILDAQKMVWNHR |
3. Peptide
|
SPNGTIQNIL
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.