Alpha This is a work in progress and may change. Your feedback is very welcome.
  


6RSY

HLA-A*02:01 presenting "RMFPNAPYL" to Alpha/Beta T cell receptor at 2.95Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide and alpha beta tcr

1. Beta 2 microglobulin
['B', 'G']
2. Class I alpha
HLA-A*02:01
['A', 'F']
3. Peptide
RMFPNAPYL
['C', 'H']
4. T cell receptor alpha
TRAV26
['D']
5. T cell receptor beta
TRBV7
['E']

Species


Locus / Allele group


Publication

Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA.

Holland CJ, Crean RM, Pentier JM, de Wet B, Lloyd A, Srikannathasan V, Lissin N, Lloyd KA, Blicher TH, Conroy PJ, Hock M, Pengelly RJ, Spinner TE, Cameron B, Potter EA, Jeyanthan A, Molloy PE, Sami M, Aleksic M, Liddy N, Robinson RA, Harper S, Lepore M, Pudney CR, van der Kamp MW, Rizkallah PJ, Jakobsen BK, Vuidepot A, Cole DK
J. Clin. Invest. (2020) [doi:10.1172/jci130562]  [pubmed:32310221

Tumor-associated peptide-human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface-expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents.

Structure deposition and release

Deposited: 2019-05-22
Released: 2020-04-15
Revised: 2020-05-13

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: RMFPNAPYL

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 ARG

TYR172
GLU59
TYR160
LYS67
TYR8
THR164
TYR60
TRP168
GLU64
MET6
P2 MET

HIS71
PHE10
GLU64
TYR100
VAL68
TYR160
LYS67
TYR8
MET46
P3 PHE

TYR160
HIS71
GLN156
TYR100
LEU157
LYS67
P4 PRO

HIS71
LYS67
ALA70
TYR160
P5 ASN

HIS71
GLN156
P6 ALA

THR74
HIS75
ARG98
HIS71
P7 PRO

TRP148
THR74
VAL153
ARG98
HIS115
ASP78
P8 TYR

LYS147
THR144
TRP148
ALA70
THR74
VAL77
ASP78
GLN73
P9 LEU

TYR124
LYS147
THR144
TRP148
LEU82
TYR117
TYR85
VAL96
ASP78
ILE125
THR81

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
B Pocket

ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
PHE9
TYR99
C Pocket

HIS70
THR73
HIS74
PHE9
ARG97
D Pocket

HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
E Pocket

HIS114
TRP147
VAL152
LEU156
ARG97
F Pocket

TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
VAL95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-A*02:01
IPD-IMGT/HLA
[ipd-imgt:HLA35266]
        10        20        30        40        50        60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDG
       130       140       150       160       170       180
KDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT
       250       260       270
FQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWEP

3. Peptide
RMFPNAPYL

4. T cell receptor alpha
T cell receptor alpha
TRAV26
        10        20        30        40        50        60
MADAKTTQPPSMDCAEGRAANLPCNHSTVDPNEYVYWYRQIHSQGPQYIIHGLKNNETNE
        70        80        90       100       110       120
MASLIITEDRKSSTLILPHATLRDTAVYYCIGGGTTSGTYKYIFGTGTRLKVLANIQNPD
       130       140       150       160       170       180
PAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWS
       190       200
NKSDFACANAFNNSIIPEDTFFPSPESS

5. T cell receptor beta
T cell receptor beta
TRBV7
        10        20        30        40        50        60
MDTGVSQDPRHKITKRGQNVTFRCDPISEHNRLYWYRQTLGQGPEFLTYFQNEAQLEKSR
        70        80        90       100       110       120
LLSDRFSAERPKGSFSTLEIQRTEQGDSAMYLCASSLGFGRDVMRFGPGTRLLVLEDLKN
       130       140       150       160       170       180
VFPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKE
       190       200       210       220       230       240
QPALNDSRYALSSRLRVSATFWQDPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAET

WGRAD


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 6RSY assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 6RSY assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 6RSY assembly 1  
Peptide only [cif]
  1. 6RSY assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/6rsy

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes