Alpha This is a work in progress and may change. Your feedback is very welcome.
  


6Q3S

HLA-A*02:01 presenting "SLLMWITQV" to Alpha/Beta T cell receptor at 2.50Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide and alpha beta tcr

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-A*02:01
['A']
3. Peptide
SLLMWITQV
['C']
4. T cell receptor alpha
TRAV21
['D']
5. T cell receptor beta
TRBV6
['E']

Species


Locus / Allele group


Publication

High-throughput peptide-MHC complex generation and kinetic screenings of TCRs with peptide-receptive HLA-A*02:01 molecules.

Moritz A, Anjanappa R, Wagner C, Bunk S, Hofmann M, Pszolla G, Saikia A, Garcia-Alai M, Meijers R, Rammensee HG, Springer S, Maurer D
Sci Immunol (2019) 4, [doi:10.1126/sciimmunol.aav0860]  [pubmed:31324691

Major histocompatibility complex (MHC) class I molecules present short peptide ligands on the cell surface for interrogation by cytotoxic CD8+ T cells. MHC class I complexes presenting tumor-associated peptides such as neoantigens represent key targets of cancer immunotherapy approaches currently in development, making them important for efficacy and safety screenings. Without peptide ligand, MHC class I complexes are unstable and decay quickly, making the production of soluble monomers for analytical purposes labor intensive. We have developed a disulfide-stabilized HLA-A*02:01 molecule that is stable without peptide but can form peptide-MHC complexes (pMHCs) with ligands of choice in a one-step loading procedure. We illustrate the similarity between the engineered mutant and the wild-type molecule with respect to affinity of wild-type or affinity-matured T cell receptors (TCRs) and present a crystal structure corroborating the binding kinetics measurements. In addition, we demonstrate a high-throughput binding kinetics measurement platform to analyze the binding characteristics of bispecific TCR (bsTCR) molecules against diverse pMHC libraries produced with the disulfide-stabilized HLA-A*02:01 molecule. We show that bsTCR affinities for pMHCs are indicative of in vitro function and generate a bsTCR binding motif to identify potential off-target interactions in the human proteome. These findings showcase the potential of the platform and the engineered HLA-A*02:01 molecule in the emerging field of pMHC-targeting biologics.

Structure deposition and release

Deposited: 2018-12-04
Released: 2019-07-24
Revised: 2021-02-03

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: SLLMWITQV

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 SER

TYR59
TYR7
GLU63
PHE33
MET5
TYR171
TYR159
TRP167
LYS66
P2 LEU

TYR159
PHE9
LYS66
HIS70
TYR7
MET45
TYR99
GLU63
VAL67
P3 LEU

TYR159
HIS70
LYS66
HIS114
TYR99
LEU156
P4 MET

HIS70
LYS66
P5 TRP

LEU156
P6 ILE

HIS114
TYR99
ALA69
THR73
HIS74
ARG97
HIS70
P7 THR

THR73
VAL152
TRP147
ASP77
ARG97
P8 GLN

THR73
TRP147
ASP77
GLN72
VAL76
THR143
ARG97
P9 VAL

THR143
TRP147
TYR116
LEU81
ASP77
THR80
TYR123
LYS146

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
B Pocket

ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
PHE9
TYR99
C Pocket

HIS70
THR73
HIS74
PHE9
ARG97
D Pocket

HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
E Pocket

HIS114
TRP147
VAL152
LEU156
ARG97
F Pocket

TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
CYS84
VAL95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-A*02:01
IPD-IMGT/HLA
[ipd-imgt:HLA35266]
        10        20        30        40        50        60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DGETRKVKAHSQTHRVDLGTLRGCYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDG
       130       140       150       160       170       180
KDYIALKEDLRSWTAADMCAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT
       250       260       270
FQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWEP

3. Peptide
SLLMWITQV

4. T cell receptor alpha
T cell receptor alpha
TRAV21
        10        20        30        40        50        60
QEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQDPGKGLTSLLLIQSSQREQTSGR
        70        80        90       100       110       120
LNASLDKSSGRSTLYIAASQPGDSATYLCAVRPTSGGSYIPTFGRGTSLIVHPYIQNPDP
       130       140       150       160       170       180
AVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSN
       190       200
KSDFACANAFNNSIIPEDTFFPSPESS

5. T cell receptor beta
T cell receptor beta
TRBV6
        10        20        30        40        50        60
GVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPN
        70        80        90       100       110       120
GYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYVGNTGELFFGEGSRLTVLEDLKNVFPP
       130       140       150       160       170       180
EVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPAL
       190       200       210       220       230       240
NDSRYALSSRLRVSATFWQDPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWGRA

D


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 6Q3S assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 6Q3S assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 6Q3S assembly 1  
Peptide only [cif]
  1. 6Q3S assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/6q3s

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes