HLA-A*11:01 binding "AIFQSSMTK" with antibody at 2.40Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and antibody
HLA-A*11:01
AIFQSSMTK
Species
Locus / Allele group
Defining the structural basis for human alloantibody binding to human leukocyte antigen allele HLA-A*11:01.
Our understanding of the conformational and electrostatic determinants that underlie targeting of human leukocyte antigens (HLA) by anti-HLA alloantibodies is principally based upon in silico modelling. Here we provide a biochemical/biophysical and functional characterization of a human monoclonal alloantibody specific for a common HLA type, HLA-A*11:01. We present a 2.4 Å resolution map of the binding interface of this antibody on HLA-A*11:01 and compare the structural determinants with those utilized by T-cell receptor (TCR), killer-cell immunoglobulin-like receptor (KIR) and CD8 on the same molecule. These data provide a mechanistic insight into the paratope-epitope relationship between an alloantibody and its target HLA molecule in a biological context where other immune receptors are concomitantly engaged. This has important implications for our interpretation of serologic binding patterns of anti-HLA antibodies in sensitized individuals and thus, for the biology of human alloresponses.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ALA
ARG163
GLU63
MET5
TYR59
TYR7
TYR171
TYR159
GLN62
TRP167
|
P2
ILE
ASN66
TYR9
ARG163
GLU63
MET45
TYR7
VAL67
TYR159
TYR99
|
P3
PHE
TYR99
TYR159
GLN155
ARG163
ARG114
GLN156
TYR9
|
P4
GLN
ASN66
ARG163
TYR159
|
P5
SER
GLN155
|
P6
SER
ARG114
GLN70
THR73
|
P7
MET
ASP77
GLN155
ARG114
TRP133
TRP147
GLN156
ALA152
THR73
|
P8
THR
LYS146
TRP147
VAL76
THR73
ASP77
|
P9
LYS
THR80
ILE142
ARG114
ASP77
THR143
TYR123
LYS146
TRP147
ASP116
ILE124
TYR84
ILE97
LEU81
ILE95
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ALA159
GLY163
GLU167
ARG171
SER5
GLU59
GLN63
ARG66
ARG7
|
B Pocket
ILE24
PHE34
ARG45
GLN63
ARG66
ASN67
ARG7
ALA70
PHE9
MET99
|
C Pocket
ALA70
GLN73
THR74
PHE9
GLN97
|
D Pocket
TYR114
GLU155
GLN156
ALA159
TYR160
MET99
|
E Pocket
TYR114
LYS147
HIS152
GLN156
GLN97
|
F Pocket
GLN116
ASP123
ILE143
ARG146
LYS147
VAL77
GLY80
THR81
GLY84
THR95
|
Colour key
Data provenance
1. ab_heavy
ab_heavy
|
10 20 30 40 50 60
EVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTSY 70 80 90 100 110 120 AQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARVTTVIAGPVFDYWGQGTLVTVS 130 140 150 160 170 180 SASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS 190 200 210 220 SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK |
2. ab_light
ab_light
|
10 20 30 40 50 60
QAVLTQPSSLSASPGASASLTCTLRSGINVGPYNIYWYQQKPGSPPQYLMRYKSDPDKHQ 70 80 90 100 110 120 GSAVPSRFSGSKDASANAGILLISGLQSEDEADYYCMIWHNNAWVFGGGTKLTVLGQPKA 130 140 150 160 170 180 APSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNK 190 200 210 220 YAASSYLSLTPEQWKSHKSYSCQVTHEGSTVEKTVAPTECS |
3. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
4. Class I alpha
HLA-A*11:01
IPD-IMGT/HLA
[ipd-imgt:HLA34732] |
10 20 30 40 50 60
MGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEY 70 80 90 100 110 120 WDQETRNVKAQSQTDRVDLGTLRGYYNQSEDGSHTIQIMYGCDVGPDGRFLRGYRQDAYD 130 140 150 160 170 180 GKDYIALNEDLRSWTAADMAAQITKRKWEAAHAAEQQRAYLEGRCVEWLRRYLENGKETL 190 200 210 220 230 240 QRTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDG 250 260 270 TFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWE |
5. Peptide
|
AIFQSSMTK
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.