HLA-B*07:02 presenting "APRGPHGGAASGL" to Alpha/Beta T cell receptor at 2.03Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-B*07:02
APRGPHGGAASGL
TRAV4
TRBV28
Species
Locus / Allele group
Divergent T-cell receptor recognition modes of a HLA-I restricted extended tumour-associated peptide.
Human leukocyte antigen (HLA)-I molecules generally bind short peptides (8-10 amino acids), although extended HLA-I restricted peptides (>10 amino acids) can be presented to T cells. However, the function of such extended HLA-I epitopes in tumour immunity, and how they would be recognised by T-cell receptors (TCR) remains unclear. Here we show that the structures of two distinct TCRs (TRAV4+TRAJ21+-TRBV28+TRBJ2-3+ and TRAV4 + TRAJ8+-TRBV9+TRBJ2-1+), originating from a polyclonal T-cell repertoire, bind to HLA-B*07:02, presenting a 13-amino-acid-long tumour-associated peptide, NY-ESO-160-72. Comparison of the structures reveals that the two TCRs differentially binds NY-ESO-160-72-HLA-B*07:02 complex, and induces differing extent of conformational change of the NY-ESO-160-72 epitope. Accordingly, polyclonal TCR usage towards an extended HLA-I restricted tumour epitope translates to differing TCR recognition modes, whereby extensive flexibility at the TCR-pHLA-I interface engenders recognition.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ALA
TYR7
TYR171
ARG62
TRP167
MET5
TYR99
TYR159
ASN63
TYR59
|
P10
ALA
THR73
|
P11
SER
THR73
ARG156
GLU152
TYR116
TRP147
|
P12
GLY
THR73
SER77
LYS146
TRP147
|
P13
LEU
LEU81
LYS146
TRP147
LEU95
THR143
TYR123
TYR84
SER77
ASN80
ILE124
TYR116
|
P2
PRO
GLU45
TYR99
TYR159
ASN63
TYR9
TYR7
ILE66
ARG62
TYR67
|
P3
ARG
ASP114
TYR159
GLN70
TYR9
TYR99
ARG156
ILE66
TYR116
ARG62
|
P4
GLY
ILE66
ARG62
|
P5
PRO
GLN155
ILE66
|
P6
HIS
GLN155
GLU163
ALA158
|
P7
GLY
GLN155
ARG156
TYR159
|
P8
GLY
GLU152
GLN155
GLN70
ARG156
|
P9
ALA
GLN70
ALA69
THR73
ILE66
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ALA159
ALA163
THR167
TRP171
ALA5
ARG59
ASP63
SER66
ARG7
|
B Pocket
ALA24
THR34
ARG45
ASP63
SER66
PRO67
ARG7
GLU70
VAL9
ARG99
|
C Pocket
GLU70
ALA73
PRO74
VAL9
THR97
|
D Pocket
ALA114
ARG155
SER156
ALA159
ALA160
ARG99
|
E Pocket
ALA114
TYR147
GLU152
SER156
THR97
|
F Pocket
SER116
TYR123
ASP143
ASP146
TYR147
GLU77
GLY80
PRO81
TRP84
ALA95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*07:02
IPD-IMGT/HLA
[ipd-imgt:HLA34746] |
10 20 30 40 50 60
MLVMAPRTVLLLLSAALALTETWAGSHSMRYFYTSVSRPGRGEPRFISVGYVDDTQFVRF 70 80 90 100 110 120 DSDAASPREEPRAPWIEQEGPEYWDRNTQIYKAQAQTDRESLRNLRGYYNQSEAGSHTLQ 130 140 150 160 170 180 SMYGCDVGPDGRLLRGHDQYAYDGKDYIALNEDLRSWTAADTAAQITQRKWEAAREAEQR 190 200 210 220 230 240 RAYLEGECVEWLRRYLENGKDKLERADPPKTHVTHHPISDHEATLRCWALGFYPAEITLT 250 260 270 280 290 300 WQRDGEDQTQDTELVETRPAGDRTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP 310 320 330 340 350 360 SSQSTVPIVGIVAGLAVLAVVVIGAVVAAVMCRRKSSGGKGGSYSQAACSDSAQGSDVSL TA |
3. Peptide
|
APRGPHGGAASGL
|
4. T cell receptor alpha
T cell receptor alpha
TRAV4
|
10 20 30 40 50 60
MLAKTTQPISMDSYEGQEVNITCSHNNIATNDYITWYQQFPSQGPRFIIQGYKTKVTNEV 70 80 90 100 110 120 ASLFIPADRKSSTLSLPRVSLSDTAVYYCLVGEILDNFNKFYFGSGTKLNVKPNIQNPDP 130 140 150 160 170 180 AVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSN 190 200 KSDFACANAFNNSIIPEDTFFPSPESS |
5. T cell receptor beta
T cell receptor beta
TRBV28
|
10 20 30 40 50 60
MDVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLGLRLIYFSYDVKMKEKGD 70 80 90 100 110 120 IPEGYSVSREKKERFSLILESASTNQTSMYLCASSQRQEGDTQYFGPGTRLTVLEDLKNV 130 140 150 160 170 180 FPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQ 190 200 210 220 230 240 PALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAW GRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.