HLA-B*35:01 binding "IPLTEEAEL" at 1.70Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*35:01
IPLTEEAEL
Species
Locus / Allele group
Conserved V��1 binding geometry in a setting of locus-disparate pHLA recognition by ��/����TCRs: insight into recognition of HIV peptides by TCR.
An essential step in the development of effective antiviral humoral responses is cytokine-triggered class switch recombination resulting in the production of antibodies of a specific isotype. Most viral and parasitic infections in mice induce predominantly IgG2a-specific antibody responses that are stimulated by interferon gamma (IFN-γ). However, in some mice deficient in IFN-γ, class switching to IgG2a antibodies is relatively unaffected, indicating that another signal(s) can be generated upon viral or parasitic infections that trigger this response. Here, we found that a single recessive locus, provisionally called IFN-γ-independent IgG2a (Igii), confers the ability to produce IFN-γ-independent production of IgG2a antibodies upon retroviral infection. The Igii locus was mapped to chromosome 9 and was found to function in the radiation-resistant compartment. Thus, our data implicate nonhematopoietic cells in activation of antiviral antibody responses in the absence of IFN-γ.IMPORTANCE Understanding the signals that stimulate antibody production and class switch recombination to specific antibody isotypes is crucial for the development of novel vaccines and adjuvants. While an interferon gamma-mediated switch to the IgG2a isotype upon viral infection in mice has been well established, this investigation reveals a noncanonical, interferon gamma-independent pathway for antiretroviral antibody production and IgG2a class switch recombination that is controlled by a single recessive locus. Furthermore, this study indicates that the radiation-resistant compartment can direct antiviral antibody responses, suggesting that detection of infection by nonhematopoietic cells is involved is stimulating adaptive immunity.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
![](https://images.histo.fyi/cleft/side/combined/5xos_1_combined_medium.png)
![](https://images.histo.fyi/cleft/yrb/5xos_1_yrb_medium.png)
![](https://images.histo.fyi/cleft/top/combined/5xos_1_combined_medium.png)
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ILE
TYR59
LEU163
ASN63
MET5
TRP167
TYR171
PHE33
ARG62
TYR159
TYR7
|
P2
PRO
TYR7
TYR9
ASN63
ILE66
PHE67
TYR99
TYR159
|
P3
LEU
GLN155
TYR99
TYR159
TYR9
LEU156
ILE66
ASN70
|
P4
THR
ILE66
GLN155
ARG62
|
P5
GLU
GLN155
|
P6
GLU
ASN70
GLN155
ARG97
THR73
TYR99
TYR74
TYR9
|
P7
ALA
VAL152
TRP147
THR73
ARG97
|
P8
GLU
TRP147
LYS146
THR73
GLU76
SER77
ASN80
|
P9
LEU
LEU81
ILE95
SER77
THR143
LYS146
TRP147
TYR84
TYR123
TYR74
ARG97
SER116
ASN80
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
![](https://images.histo.fyi/cleft/pockets/labelled/5xos_1_labelled_medium.png)
![](https://images.histo.fyi/cleft/terminii/labelled/5xos_1_labelled_medium.png)
A Pocket
TYR159
LEU163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
|
B Pocket
ALA24
ASP34
THR45
ASN63
ILE66
PHE67
TYR7
ASN70
TYR9
TYR99
|
C Pocket
ASN70
THR73
TYR74
TYR9
ARG97
|
D Pocket
ASP114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
ASP114
TRP147
VAL152
LEU156
ARG97
|
F Pocket
SER116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
ILE95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*35:01
IPD-IMGT/HLA
[ipd-imgt:HLA34423] |
10 20 30 40 50 60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFDRFDSDAASPRTEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRNTQIFKTNTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGLCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
IPLTEEAEL
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
![Creative Commons Licence](https://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.