HLA-A*24:02 binding "LYKKLKREMTF" at 3.29Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-A*24:02
LYKKLKREMTF
Species
Locus / Allele group
Heterosubtypic Protections against Human-Infecting Avian Influenza Viruses Correlate to Biased Cross-T-Cell Responses.
The function of the mammalian orthoreovirus (reovirus) σNS nonstructural protein is enigmatic. σNS is an RNA-binding protein that forms oligomers and enhances the stability of bound RNAs, but the mechanisms by which it contributes to reovirus replication are unknown. To determine the function of σNS-RNA binding in reovirus replication, we engineered σNS mutants deficient in RNA-binding capacity. We found that alanine substitutions of positively charged residues in a predicted RNA-binding domain decrease RNA-dependent oligomerization. To define steps in reovirus replication facilitated by the RNA-binding property of σNS, we established a complementation system in which wild-type or mutant forms of σNS could be tested for the capacity to overcome inhibition of σNS expression. Mutations in σNS that disrupt RNA binding also diminish viral replication and σNS distribution to viral factories. Moreover, viral mRNAs only incorporate into viral factories or factory-like structures (formed following expression of nonstructural protein μNS) when σNS is present and capable of binding RNA. Collectively, these findings indicate that σNS requires positively charged residues in a putative RNA-binding domain to recruit viral mRNAs to sites of viral replication and establish a function for σNS in reovirus replication. IMPORTANCE Viral replication requires the formation of neoorganelles in infected cells to concentrate essential viral and host components. However, for many viruses, it is unclear how these components coalesce into neoorganelles to form factories for viral replication. We discovered that two mammalian reovirus nonstructural proteins act in concert to form functioning viral factories. Reovirus μNS proteins assemble into exclusive factory scaffolds that require reovirus σNS proteins for efficient viral mRNA incorporation. Our results demonstrate a role for σNS in RNA recruitment to reovirus factories and, more broadly, show how a cytoplasmic non-membrane-enclosed factory is formed by an RNA virus. Understanding the mechanisms of viral factory formation will help identify new targets for antiviral therapeutics that disrupt assembly of these structures and inform the use of nonpathogenic viruses for biotechnological applications.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
LEU
GLU63
GLY167
MET5
TYR171
PHE99
TYR7
ARG170
TYR159
LYS66
CYS164
TYR59
THR163
ASP166
|
P10
THR
LYS146
TRP147
ILE80
THR73
ASN77
GLU76
|
P11
PHE
ILE142
ASN77
LYS146
ALA81
LEU95
TYR84
THR143
TYR123
TRP147
ILE80
TYR116
|
P2
TYR
SER9
TYR159
LYS66
ALA24
VAL67
MET45
GLU63
PHE22
PHE99
TYR7
HIS70
|
P3
LYS
PHE99
TYR116
HIS70
TYR159
LYS66
MET97
HIS114
GLN156
|
P4
LYS
TYR159
LYS66
|
P5
LEU
VAL152
GLN155
GLN156
|
P6
LYS
GLN155
|
P7
ARG
GLN155
|
P8
GLU
ALA69
HIS70
THR73
|
P9
MET
THR73
ALA150
ASN77
LYS146
TRP147
VAL152
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
GLY167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
SER9
PHE99
|
C Pocket
HIS70
THR73
ASP74
SER9
MET97
|
D Pocket
HIS114
GLN155
GLN156
TYR159
LEU160
PHE99
|
E Pocket
HIS114
TRP147
VAL152
GLN156
MET97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
ASN77
ILE80
ALA81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
AIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*24:02
IPD-IMGT/HLA
[ipd-imgt:HLA34790] |
10 20 30 40 50 60
GSHSMRYFSTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DEETGKVKAHSQTDRENLRIALRYYNQSEAGSHTLQMMFGCDVGSDGRFLRGYHQYAYDG 130 140 150 160 170 180 KDYIALKEDLRSWTAADMAAQITKRKWEAAHVAEQQRAYLEGTCVDGLRRYLENGKETLQ 190 200 210 220 230 240 RTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRW |
3. Peptide
|
LYKKLKREMTF
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.