H2-Dd binding "RGPGC" at 2.71Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
H2-Dd
RGPGC
Species
Locus / Allele group
Crystal structure of a TAPBPR-MHC-I complex reveals the mechanism of peptide editing in antigen presentation.
Central to CD8+ T cell-mediated immunity is the recognition of peptide-major histocompatibility complex class I (p-MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein-related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ARG
LEU5
ARG62
GLU63
TRP167
TYR159
TYR59
TYR171
GLU163
TYR7
CYS164
ARG66
|
P2
GLY
ARG66
GLU163
GLU63
TYR159
TYR7
|
P3
PRO
TRP97
TYR7
ASN70
ALA99
TRP114
ARG66
TYR159
|
P4
GLY
ASN70
ARG155
ARG66
TRP114
TRP97
|
P5
CYS
GLY69
CYS73
ASN70
PHE116
TRP114
ARG155
PHE74
TRP97
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
LEU159
CYS163
LEU167
LEU171
ARG5
TRP59
THR63
ALA66
PHE7
|
B Pocket
VAL24
ARG34
GLU45
THR63
ALA66
LYS67
PHE7
GLU70
THR9
GLY99
|
C Pocket
GLU70
PHE73
ARG74
THR9
MET97
|
D Pocket
GLN114
ASP155
ARG156
LEU159
GLU160
GLY99
|
E Pocket
GLN114
GLU147
ALA152
ARG156
MET97
|
F Pocket
ALA116
ILE123
ARG143
TRP146
GLU147
LEU77
ALA80
LEU81
TYR84
GLN95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKDW 70 80 90 SFYILAHTEFTPTETDTYACRVKHASMAEPKTVYWDRDM |
2. Class I alpha
H2-Dd
|
10 20 30 40 50 60
SHSLRYFVTAVSRPGFGEPRYMEVGYVDNTEFVRFDSDAENPRYEPRARWIEQEGPEYWE 70 80 90 100 110 120 RETRRAKGNEQCFRVDLRTALRYYNQSAGGSHTLQWMAGCDVESDGRLLRGYWQFAYDGC 130 140 150 160 170 180 DYIALNEDLKTWTAADMAAQITRRKWEQAGAAERDRAYLEGECVEWLRRYLKNGNATLLR 190 200 210 220 230 240 TDPPKAHVTHHRRPEGDVTLRCWALGFYPADITLTWQLNGEELTQEMELVETRPAGDGTF 250 260 270 QKWASVVVPLGKEQKYTCHVEHEGLPEPLTLRWGKE |
3. Peptide
|
RGPGC
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.