Alpha This is a work in progress and may change. Your feedback is very welcome.
  


5W1V

HLA-E*01:01 presenting "VMAPRTLIL" to Alpha/Beta T cell receptor at 3.31Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide and alpha beta tcr

1. Beta 2 microglobulin
['B', 'G', 'L', 'Q']
2. Class I alpha
HLA-E*01:01
['A', 'F', 'K', 'P']
3. Peptide
VMAPRTLIL
['C', 'H', 'M', 'R']
4. T cell receptor alpha
TRAV35
['D']
5. T cell receptor beta
TRBV9
['E']

Species


Locus / Allele group


Publication

A conserved energetic footprint underpins recognition of Human Leukocyte Antigen-E by two distinct ���� T cell receptors.

Sullivan LC, Walpole NG, Farenc C, Pietra G, Sum MJW, Clements CS, Lee EJ, Beddoe T, Falco M, Mingari MC, Moretta L, Gras S, Rossjohn J, Brooks AG
J. Biol. Chem. (2017) [doi:10.1074/jbc.M117.807719]  [pubmed:28972140

αβ T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.

Structure deposition and release

Deposited: 2017-06-04
Released: 2017-10-04
Revised: 2020-01-01

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: VMAPRTLIL

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 VAL

TYR171
HIS99
PHE33
TYR59
THR163
GLU63
LEU5
TRP167
TYR159
ARG62
TYR7
P2 MET

TYR159
HIS9
TRP97
TYR7
GLU63
THR70
MET45
ALA67
HIS99
SER24
SER66
P3 ALA

THR70
SER66
TRP97
GLN156
TYR159
HIS99
P4 PRO

TYR159
SER66
P5 ARG

HIS155
GLN156
TRP97
GLU152
P6 THR

GLU152
GLN156
PHE116
THR70
ILE73
PHE74
TRP97
P7 LEU

ILE73
TRP133
GLU152
SER147
ASN77
LEU124
PHE116
P8 ILE

ASN77
LYS146
ILE73
P9 LEU

LEU81
TYR123
LEU95
SER143
ASN77
LEU124
THR80
PHE116
LYS146
TYR84

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
THR163
TRP167
TYR171
LEU5
TYR59
GLU63
SER66
TYR7
B Pocket

SER24
VAL34
MET45
GLU63
SER66
ALA67
TYR7
THR70
HIS9
HIS99
C Pocket

THR70
ILE73
PHE74
HIS9
TRP97
D Pocket

GLU114
HIS155
GLN156
TYR159
LEU160
HIS99
E Pocket

GLU114
SER147
GLU152
GLN156
TRP97
F Pocket

PHE116
TYR123
SER143
LYS146
SER147
ASN77
THR80
LEU81
TYR84
LEU95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-E*01:01
IPD-IMGT/HLA
[ipd-imgt:HLA34073]
        10        20        30        40        50        60
GSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEYW
        70        80        90       100       110       120
DRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCELGPDRRFLRGYEQFAYDG
       130       140       150       160       170       180
KDYLTLNEDLRSWTAVDTAAQISEQKSNDASEAEHQRAYLEDTCVEWLHKYLEKGKETLL
       190       200       210       220       230       240
HLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVETRPAGDGT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPEPVTLRWKPAS

3. Peptide
VMAPRTLIL

4. T cell receptor alpha
T cell receptor alpha
TRAV35
        10        20        30        40        50        60
GQQLNQSPQSMFIQEGEDVSMNCTSSSIFNTWLWYKQDPGEGPVLLIALYKAGELTSNGR
        70        80        90       100       110       120
LTAQFGITRKDSFLNISASIPSDVGIYFCAGQPLGGSNYKLTFGKGTLLTVNPNIQNPDP
       130       140       150       160       170       180
AVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSN
       190       200
KSDFACANAFNNSIIPEDTFFPSPESS

5. T cell receptor beta
T cell receptor beta
TRBV9
        10        20        30        40        50        60
DSGVTQTPKHLITATGQRVTLRCSPRSGDLSVYWYQQSLDQGLQFLIQYYNGEERAKGNI
        70        80        90       100       110       120
LERFSAQQFPDLHSELNLSSLELGDSALYFCASSANPGDSSNEKLFFGSGTQLSVLEDLN
       130       140       150       160       170       180
KVFPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLK
       190       200       210       220       230       240
EQPALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAE

AWGRAD


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 5W1V assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 5W1V assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 5W1V assembly 1  
Peptide only [cif]
  1. 5W1V assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/5w1v

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes