H2-Db with peptide editor TAPBPR at 3.30Å resolution
Data provenance
Information sections
Complex type
H2-Db
Species
Locus / Allele group
Structure of the TAPBPR-MHC I complex defines the mechanism of peptide loading and editing.
Adaptive immunity is shaped by a selection of peptides presented on major histocompatibility complex class I (MHC I) molecules. The chaperones Tapasin (Tsn) and TAP-binding protein-related (TAPBPR) facilitate MHC I peptide loading and high-affinity epitope selection. Despite the pivotal role of Tsn and TAPBPR in controlling the hierarchical immune response, their catalytic mechanism remains unknown. Here, we present the x-ray structure of the TAPBPR-MHC I complex, which delineates the central step of catalysis. TAPBPR functions as peptide selector by remodeling the MHC I α2-1-helix region, stabilizing the empty binding groove, and inserting a loop into the groove that interferes with peptide binding. The complex explains how mutations in MHC I-specific chaperones cause defects in antigen processing and suggests a unifying mechanism of peptide proofreading.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
A Pocket
TYR159
GLU163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
SER24
VAL34
TYR45
GLU63
LYS66
ALA67
TYR7
GLN70
GLU9
SER99
|
C Pocket
GLN70
TRP73
PHE74
GLU9
GLN97
|
D Pocket
LEU114
HIS155
TYR156
TYR159
LEU160
SER99
|
E Pocket
LEU114
TRP147
ALA152
TYR156
GLN97
|
F Pocket
PHE116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
H2-Db
|
10 20 30 40 50 60
GPHSMRYFETAVSRPGLEEPRYISVGYVDNKEFVRFDSDAENPRYEPRAPWMEQEGPEYW 70 80 90 100 110 120 ERETQKAKGQEQWFRVSLRNLLGYYNQSAGGSHTLQQMSGCDLGSDWRLLRGYLQFAYEG 130 140 150 160 170 180 RDYIALNEDLKTWTAADMAAQITRRKWEQSGAAEHYKAYLEGECVEWLHRYLKNGNATLL 190 200 210 220 230 240 RTDSPKAHVTHHPRSKGEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDGT 250 260 270 FQKWASVVVPLGKEQNYTCRVYHEGLPEPLTLRWEPSSA |
3. TAPBPR (Tapasin homologue)
TAPBPR (Tapasin homologue)
|
10 20 30 40 50 60
ADPGVDVVLDCFLVKDGAHRGALASSEDRARASLVLKQVPVLDDGSLEDFTDFQGGTLAQ 70 80 90 100 110 120 DDPPIIFEASVDLVQIPQAEALLHADASGKEVTCEISRYFLQMTETTVKTAAWFMANVQV 130 140 150 160 170 180 SGGGPSISLVMKTPRVAKNEVLWHPTLNLPLSPQGTVRTAVEFQVMTQTQSLSFLLGSSA 190 200 210 220 230 240 SLDCGFSMAPGLDLISVEWRLQHKGRGQLVYSWTAGQGQAVRKGATLEPAQLGMARDASL 250 260 270 280 290 300 TLPGLTIQDEGTYICQITTSLYRAQQIIQLNIQASPKVRLSLANEALLPTLICDIAGYYP 310 320 330 340 350 360 LDVVVTWTREELGGSPAQVSGASFSSLRQSVAGTYSISSSLTAEPGSAGATYTCQVTHIS 370 LEEPLGASTQVVP |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.