H2-Dd presenting "RGPGRAFVTI" to Alpha/Beta T cell receptor at 2.10Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
H2-Dd
RGPGRAFVTI
TRAV14
TRBV29
Species
Locus / Allele group
An allosteric site in the T-cell receptor C�� domain plays a critical signalling role.
The molecular mechanism through which the interaction of a clonotypic αβ T-cell receptor (TCR) with a peptide-loaded major histocompatibility complex (p/MHC) leads to T-cell activation is not yet fully understood. Here we exploit a high-affinity TCR (B4.2.3) to examine the structural changes that accompany binding to its p/MHC ligand (P18-I10/H2-Dd). In addition to conformational changes in complementarity-determining regions (CDRs) of the TCR seen in comparison of unliganded and bound X-ray structures, NMR characterization of the TCR β-chain dynamics reveals significant chemical shift effects in sites removed from the MHC-binding site. Remodelling of electrostatic interactions near the Cβ H3 helix at the membrane-proximal face of the TCR, a region implicated in interactions with the CD3 co-receptor, suggests a possible role for an allosteric mechanism in TCR signalling. The contribution of these TCR residues to signal transduction is supported by mutagenesis and T-cell functional assays.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ARG
LEU5
ARG62
TRP167
TYR171
TYR159
TYR59
GLU63
GLU163
TYR7
ARG66
|
P10
ILE
ASP77
THR143
TYR84
TYR123
LYS146
ALA81
THR80
TRP147
LEU95
ILE142
|
P2
GLY
TYR7
ARG66
ARG62
TYR159
GLU63
|
P3
PRO
TRP97
ALA99
TYR159
TYR7
ASN70
TRP114
ARG66
|
P4
GLY
ASN70
TRP114
ASP156
ARG66
TRP97
|
P5
ARG
SER73
TRP147
ASN70
ASP77
PHE74
TRP97
PHE116
|
P6
ALA
ARG155
SER73
ASN70
|
P7
PHE
GLY69
GLN72
SER73
|
P8
VAL
ALA152
ARG155
SER73
TRP147
|
P9
THR
TRP147
SER73
VAL76
LYS146
ASP77
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
GLU163
TRP167
TYR171
LEU5
TYR59
GLU63
ARG66
TYR7
|
B Pocket
GLU24
VAL34
TYR45
GLU63
ARG66
ALA67
TYR7
ASN70
VAL9
ALA99
|
C Pocket
ASN70
SER73
PHE74
VAL9
TRP97
|
D Pocket
TRP114
ARG155
ASP156
TYR159
LEU160
ALA99
|
E Pocket
TRP114
TRP147
ALA152
ASP156
TRP97
|
F Pocket
PHE116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
ALA81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKD 70 80 90 WSFYILAHTEFTPTETDTYACRVKHASMAEPKTVYWDRDM |
2. Class I alpha
H2-Dd
|
10 20 30 40 50 60
MSHSLRYFVTAVSRPGFGEPRYMEVGYVDNTEFVRFDSDAENPRYEPRARWIEQEGPEYW 70 80 90 100 110 120 ERETRRAKGNEQSFRVDLRTALRYYNQSAGGSHTLQWMAGCDVESDGRLLRGYWQFAYDG 130 140 150 160 170 180 CDYIALNEDLKTWTAADMAAQITRRKWEQAGAAERDRAYLEGECVEWLRRYLKNGNATLL 190 200 210 220 230 240 RTDPPKAHVTHHRRPEGDVTLRCWALGFYPADITLTWQLNGEELTQEMELVETRPAGDGT 250 260 270 FQKWASVVVPLGKEQKYTCHVEHEGLPEPLTLRWGKE |
3. Peptide
|
RGPGRAFVTI
|
4. T cell receptor alpha
T cell receptor alpha
TRAV14
|
10 20 30 40 50 60
QQVRQSPQSLTVWEGETAILNCSYENSAFDYFPWYQQFPGEGPALLISILSVSNKKEDGR 70 80 90 100 110 120 FTIFFNKREKKLSLHIADSQPGDSATYFCAASASFGDNSKLIWGLGTSLVVNPNIQNPEP 130 140 150 160 170 180 AVYQLKDPRSQDSTLCLFTDFDSQINVPKTMESGTFITDKCVLDMKAMDSKSNGAIAWSN 190 QTSFTCQDIFKETN |
5. T cell receptor beta
T cell receptor beta
TRBV29
|
10 20 30 40 50 60
MKVTQMPRYLIKRMGENVLLECGQDMSHETMYWYRQDPGLGLQLIYISYDVDSNSEGDIP 70 80 90 100 110 120 KGYRVSRKKREHFSLILDSAKTNQTSVYFCASSLGHTEVFFGKGTRLTVVEDLRNVTPPK 130 140 150 160 170 180 VSLFEPSKAEIANKQKATLVCLARGFFPDHVELSWWVNGKEVHSGVCTDPQAYKESNYSY 190 200 210 220 230 ALSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKWPEGSPKPVTQNISAEAWGR |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.