HLA-A*02:01 presenting "AQWGPDPAAA" to Alpha/Beta T cell receptor at 3.06Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-A*02:01
AQWGPDPAAA
TRAV12
TRBV12
Species
Locus / Allele group
A 'hotspot' for autoimmune T cells in type 1 diabetes.
The ability of a single T cell antigen receptor (TCR) to cross-react with multiple antigens allows the finite number of T cells within an organism to respond to the compendium of pathogen challenges faced during a lifetime. Effective immune surveillance, however, comes at a price. TCR cross-reactivity can allow molecular mimics to spuriously activate autoimmune T cells; it also underlies T cell rejection of organ transplants and drives graft-versus-host disease. In this issue of the JCI, Cole and colleagues provide insight into how an insulin-reactive T cell cross-reacts with pathogen-derived antigens by focusing on a limited portion of the peptides to provide a hotspot for binding. These findings dovetail with recent studies of alloreactive and autoimmune TCRs and suggest that the biochemical principles that govern conventional protein-protein interactions may allow the specificity and cross-reactivity profiles of T cells to be predicted.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ALA
TYR171
PHE33
TYR59
TYR159
LYS66
TRP167
MET5
GLU63
TYR7
|
P10
ALA
LYS146
THR143
TYR123
LEU81
TYR116
TRP147
ASP77
THR80
TYR84
THR142
|
P2
GLN
TYR99
GLU63
TYR7
PHE9
VAL67
HIS70
MET45
TYR159
LYS66
|
P3
TRP
TYR159
VAL152
GLN155
LYS66
HIS114
LEU156
TYR99
ARG97
|
P4
GLY
LYS66
|
P5
PRO
HIS70
LYS66
ARG65
ALA69
|
P6
ASP
ALA69
HIS70
THR73
|
P7
PRO
ARG97
THR73
HIS70
|
P8
ALA
TRP147
ARG97
THR73
ASP77
VAL152
|
P9
ALA
VAL76
LYS146
TRP147
THR73
ASP77
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
PHE9
TYR99
|
C Pocket
HIS70
THR73
HIS74
PHE9
ARG97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ARG97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
VAL95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*02:01
IPD-IMGT/HLA
[ipd-imgt:HLA35266] |
10 20 30 40 50 60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDG 130 140 150 160 170 180 KDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
AQWGPDPAAA
|
4. T cell receptor alpha
T cell receptor alpha
TRAV12
|
10 20 30 40 50 60
KEVEQDPGPLSVPEGAIVSLNCTYSNSAFQYFMWYRQYSRKGPELLMYTYSSGNKEDGRF 70 80 90 100 110 120 TAQVDKSSKYISLFIRDSQPSDSATYLCAMRGDSSYKLIFGSGTRLLVRPDIQNPDPAVY 130 140 150 160 170 180 QLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSD 190 FACANAFNNSIIP |
5. T cell receptor beta
T cell receptor beta
TRBV12
|
10 20 30 40 50 60
DAGVIQSPRHEVTEMGQQVTLRCKPISGHDYLFWYRQTMMRGLELLIYFNNNVPIDDSGM 70 80 90 100 110 120 PEDRFSAKMPNASFSTLKIQPSEPRDSAVYFCASSLWEKLAKNIQYFGAGTRLSVLEDLK 130 140 150 160 170 180 NVFPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLK 190 200 210 220 230 240 EQPALNDSRYALSSRLRVSATFWQDPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAE AWGRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.