HLA-A*24:02 binding "RFPLTFGW" at 2.20Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-A*24:02
RFPLTFGW
Species
Locus / Allele group
Effects of a Single Escape Mutation on T Cell and HIV-1 Co-adaptation.
The mechanistic basis for the progressive accumulation of Y(135)F Nef mutant viruses in the HIV-1-infected population remains poorly understood. Y(135)F viruses carry the 2F mutation within RW8 and RF10, which are two HLA-A(∗)24:02-restricted superimposed Nef epitopes recognized by distinct and adaptable CD8(+) T cell responses. We combined comprehensive analysis of the T cell receptor repertoire and cross-reactive potential of wild-type or 2F RW8- and RF10-specific CD8(+) T cells with peptide-MHC complex stability and crystal structure studies. We find that, by affecting direct and water-mediated hydrogen bond networks within the peptide-MHC complex, the 2F mutation reduces both TCR and HLA binding. This suggests an advantage underlying the evolution of the 2F variant with decreased CD8(+) T cell efficacy. Our study provides a refined understanding of HIV-1 and CD8(+) T cell co-adaptation at the population level.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ARG
TYR159
TYR7
ARG170
TYR171
LYS66
PHE99
TYR59
GLU63
GLY167
ASP166
THR163
GLU55
MET5
|
P2
PHE
MET97
VAL67
ALA24
TYR159
TYR7
HIS70
MET45
GLU63
LYS66
PHE22
SER9
|
P3
PRO
PHE99
LYS66
GLN156
MET97
TYR159
TYR7
|
P4
LEU
TYR159
LYS66
HIS114
GLN156
GLN155
|
P5
THR
HIS114
GLN156
THR73
MET97
TYR116
HIS70
|
P6
PHE
THR73
TYR116
TRP147
ASN77
VAL152
GLN156
GLN155
|
P7
GLY
THR73
ASN77
ILE80
THR143
TRP147
LYS146
|
P8
TRP
ASN77
TYR118
ILE80
THR143
TYR116
ALA81
ALA117
TYR84
LEU95
ILE142
LYS146
TYR123
TRP147
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ALA159
GLY163
ASP167
ARG171
SER5
GLU59
GLU63
GLY66
ARG7
|
B Pocket
ILE24
PHE34
ARG45
GLU63
GLY66
LYS67
ARG7
ALA70
PHE9
MET99
|
C Pocket
ALA70
GLN73
THR74
PHE9
GLN97
|
D Pocket
TYR114
GLU155
GLN156
ALA159
TYR160
MET99
|
E Pocket
TYR114
LYS147
HIS152
GLN156
GLN97
|
F Pocket
GLN116
ASP123
ILE143
ARG146
LYS147
GLU77
ARG80
ILE81
ARG84
THR95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*24:02
IPD-IMGT/HLA
[ipd-imgt:HLA34790] |
10 20 30 40 50 60
MGSHSMRYFSTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEY 70 80 90 100 110 120 WDEETGKVKAHSQTDRENLRIALRYYNQSEAGSHTLQMMFGCDVGSDGRFLRGYHQYAYD 130 140 150 160 170 180 GKDYIALKEDLRSWTAADMAAQITKRKWEAAHVAEQQRAYLEGTCVDGLRRYLENGKETL 190 200 210 220 230 240 QRTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDG 250 260 270 TFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRW |
3. Peptide
|
RFPLTFGW
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.