Alpha This is a work in progress and may change. Your feedback is very welcome.
  


5GSD

HLA-A*11:01 binding "SSCPLSK" at 2.30Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-A*11:01
['A']
3. Peptide
SSCPLSK
['C']

Species


Locus / Allele group


Publication

Dual non-contiguous peptide occupancy of HLA class I evoke antiviral human CD8 T cell response and form neo-epitopes with self-antigens.

Xiao Z, Ye Z, Tadwal VS, Shen M, Ren EC
Sci Rep (2017) 7, 5072 [doi:10.1038/s41598-017-05171-w]  [pubmed:28698575

Host CD8 T cell response to viral infections involves recognition of 8-10-mer peptides presented by MHC-I molecules. However, proteasomes generate predominantly 2-7-mer peptides, but the role of these peptides is largely unknown. Here, we show that single short peptides of <8-mer from Latent Membrane Protein 2 (LMP2) of Epstein Barr Virus (EBV) can bind HLA-A*11:01 and stimulate CD8+ cells. Surprisingly, two peptide fragments between 4-7-mer derived from LMP2(340-349) were able to complement each other, forming combination epitopes that can stimulate specific CD8+ T cell responses. Moreover, peptides from self-antigens can complement non-self peptides within the HLA binding cleft, forming neoepitopes. Solved structures of a tetra-complex comprising two peptides, HLA and β2-microglobulin revealed the free terminals of the two peptides to adopt an upward conformation directed towards the T cell receptor. Our results demonstrate a previously unknown mix-and-match combination of dual peptide occupancy in HLA that can generate vast combinatorial complexity.

Structure deposition and release

Deposited: 2016-08-15
Released: 2017-08-09
Revised: 2017-09-27

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Heptamer (7 amino acids)

Sequence: SSCPLSK

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 SER

TYR159
TYR9
ARG163
ASN66
TYR7
TYR99
GLU63
MET45
VAL67
P2 SER

GLN156
TYR99
TYR159
TYR9
ASN66
ARG114
P3 CYS

GLN156
GLN155
GLN70
ASN66
P4 PRO

ALA69
GLN155
GLN70
THR73
ASN66
P5 LEU

ASP77
ALA152
TRP147
TRP133
ARG114
GLN156
GLN155
GLN70
THR73
P6 SER

THR73
ASP77
TRP147
LYS146
P7 LYS

ARG114
THR143
LYS146
TYR123
ASP116
ILE97
ILE95
THR80
TYR84
LEU81
ASP77
ILE124
TRP147

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
ARG163
TRP167
TYR171
MET5
TYR59
GLU63
ASN66
TYR7
B Pocket

ALA24
VAL34
MET45
GLU63
ASN66
VAL67
TYR7
GLN70
TYR9
TYR99
C Pocket

GLN70
THR73
ASP74
TYR9
ILE97
D Pocket

ARG114
GLN155
GLN156
TYR159
LEU160
TYR99
E Pocket

ARG114
TRP147
ALA152
GLN156
ILE97
F Pocket

ASP116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW
        70        80        90
SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-A*11:01
IPD-IMGT/HLA
[ipd-imgt:HLA34732]
        10        20        30        40        50        60
GSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DQETRNVKAQSQTDRVDLGTLRGYYNQSEDGSHTIQIMYGCDVGPDGRFLRGYRQDAYDG
       130       140       150       160       170       180
KDYIALNEDLRSWTAADMAAQITKRKWEAAHAAEQQRAYLEGRCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWE

3. Peptide
SSCPLSK


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 5GSD assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 5GSD assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 5GSD assembly 1  
Peptide only [cif]
  1. 5GSD assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/5gsd

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes