HLA-B*57:01 binding "LSSPVTKSF" with KIR-3 NK receptor at 2.30Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*57:01
LSSPVTKSF
Species
Locus / Allele group
Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition.
Natural killer (NK) cells play a key role in immunity, but how HLA class I (HLA-I) and killer cell immunoglobulin-like receptor 3DL1 (KIR3DL1) polymorphism impacts disease outcome remains unclear. KIR3DL1 (*001/*005/*015) tetramers were screened for reactivity against a panel of HLA-I molecules. This revealed different and distinct hierarchies of specificity for each KIR3DL1 allotype, with KIR3DL1*005 recognizing the widest array of HLA-I ligands. These differences were further reflected in functional studies using NK clones expressing these specific KIR3DL1 allotypes. Unexpectedly, the Ile/Thr80 dimorphism in the Bw4-motif did not categorically define strong/weak KIR3DL1 recognition. Although the KIR3DL1*001, *005, and *015 polymorphisms are remote from the KIR3DL1-HLA-I interface, the structures of these three KIR3DL1-HLA-I complexes showed that the broader HLA-I specificity of KIR3DL1*005 correlated with an altered KIR3DL1*005 interdomain positioning and increased mobility within its ligand-binding site. Collectively, we provide a generic framework for understanding the impact of KIR3DL1 polymorphism on the recognition of HLA-I allomorphs.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
LEU
TYR171
TYR59
TYR7
LEU163
TRP167
GLU63
PHE33
MET5
TYR159
|
P2
SER
GLU63
MET67
TYR159
ASN66
TYR9
MET45
TYR7
TYR99
|
P3
SER
TYR159
ASN66
TYR99
TYR9
LEU156
SER70
|
P4
PRO
TYR159
LEU163
ASN66
|
P5
VAL
LEU156
GLN155
VAL152
TYR159
|
P6
THR
THR73
VAL152
|
P7
LYS
LEU156
VAL152
ASN77
TYR74
THR73
TRP147
ASP114
TRP133
|
P8
SER
ILE80
ASN77
THR73
TRP147
THR143
LYS146
|
P9
PHE
THR143
TYR123
ASN77
TYR74
SER116
ALA81
TRP147
ILE80
TYR84
ILE95
LYS146
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
LEU163
TRP167
TYR171
MET5
TYR59
GLU63
ASN66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
ASN66
MET67
TYR7
SER70
TYR9
TYR99
|
C Pocket
SER70
THR73
TYR74
TYR9
VAL97
|
D Pocket
ASP114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
ASP114
TRP147
VAL152
LEU156
VAL97
|
F Pocket
SER116
TYR123
THR143
LYS146
TRP147
ASN77
ILE80
ALA81
TYR84
ILE95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*57:01
IPD-IMGT/HLA
[ipd-imgt:HLA34051] |
10 20 30 40 50 60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRMAPRAPWIEQEGPEYW 70 80 90 100 110 120 DGETRNMKASAQTYRENLRIALRYYNQSEAGSHIIQVMYGCDVGPDGRLLRGHDQSAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGLCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. kir3
kir3
|
10 20 30 40 50 60
HMGGQDKPFLSAWPSAVVPRGGHVTLRCHYRHRFNNFMLYKEDRIHIPIFHGRIFQESFN 70 80 90 100 110 120 MSPVTTAHAGNYTCRGSHPHSPTGWSAPSNPVVIMVTGNHRKPSLLAHPGPLVKSGERVI 130 140 150 160 170 180 LQCWSDIMFEHFFLHKEGISKDPSRLVGQIHDGVSKANFSIGPMMLALAGTYRCYGSVTH 190 200 210 220 230 240 TSYQLSAPSDPLDIVVTGPYEKPSLSAQPGPKVQAGESVTLSCSSRSSYDMYHLSREGGA 250 260 270 280 290 HERRLPAVRKVNRTFQADFPLGPATHGGTYRCFGSFRHSPYELSDPSDPLLVSVTGNPS |
4. Peptide
|
LSSPVTKSF
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.