HLA-B*07:02 binding "RPQVPLRPM" at 2.09Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*07:02
RPQVPLRPM
Species
Locus / Allele group
A molecular switch in immunodominant HIV-1-specific CD8 T-cell epitopes shapes differential HLA-restricted escape.
Background
Presentation of identical HIV-1 peptides by closely related Human Leukocyte Antigen class I (HLAI) molecules can select distinct patterns of escape mutation that have a significant impact on viral fitness and disease progression. The molecular mechanisms by which HLAI micropolymorphisms can induce differential HIV-1 escape patterns within identical peptide epitopes remain unknown.Results
Here, we undertook genetic and structural analyses of two immunodominant HIV-1 peptides, Gag180-188 (TPQDLNTML, TL9-p24) and Nef71-79 (RPQVPLRPM, RM9-Nef) that are among the most highly targeted epitopes in the global HIV-1 epidemic. We show that single polymorphisms between different alleles of the HLA-B7 superfamily can induce a conformational switch in peptide conformation that is associated with differential HLAI-specific escape mutation and immune control. A dominant R71K mutation in the Nef71-79 occurred in those with HLA-B*07:02 but not B*42:01/02 or B*81:01. No structural difference in the HLA-epitope complexes was detected to explain this observation.Conclusions
These data suggest that identical peptides presented through very similar HLAI landscapes are recognized as distinct epitopes and provide a novel structural mechanism for previously observed differential HIV-1 escape and disease progression.Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ARG
TYR7
TRP167
TYR159
ILE66
GLU163
ASN63
TYR171
GLU58
TYR59
ARG62
MET5
|
P2
PRO
TYR67
TYR7
GLU163
ASN63
GLU45
TYR99
TYR159
ILE66
TYR9
|
P3
GLN
TYR99
GLN70
TYR159
ILE66
ARG156
ASP114
TYR9
GLN155
|
P4
VAL
GLN155
ARG62
GLN70
ILE66
|
P5
PRO
GLN155
ALA69
GLN70
THR73
ILE66
|
P6
LEU
GLN70
THR73
ARG156
GLU152
GLN155
|
P7
ARG
THR73
ARG156
TRP147
GLU152
ALA150
|
P8
PRO
THR73
SER77
ASN80
LYS146
TRP147
GLU76
|
P9
MET
THR143
ASN80
LYS146
TYR116
LEU81
TYR123
SER77
ILE124
LEU95
TRP147
TYR84
ILE142
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ALA159
GLY163
GLU167
ARG171
SER5
GLU59
ARG63
GLN66
ARG7
|
B Pocket
ILE24
PHE34
ARG45
ARG63
GLN66
ILE67
ARG7
ALA70
PHE9
MET99
|
C Pocket
ALA70
GLN73
THR74
PHE9
GLN97
|
D Pocket
HIS114
GLU155
GLN156
ALA159
TYR160
MET99
|
E Pocket
HIS114
LYS147
ARG152
GLN156
GLN97
|
F Pocket
GLN116
ASP123
ILE143
ARG146
LYS147
GLU77
ARG80
ASN81
GLY84
THR95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*07:02
IPD-IMGT/HLA
[ipd-imgt:HLA34746] |
10 20 30 40 50 60
MGSHSMRYFYTSVSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPEY 70 80 90 100 110 120 WDRNTQIYKAQAQTDRESLRNLRGYYNQSEAGSHTLQSMYGCDVGPDGRLLRGHDQYAYD 130 140 150 160 170 180 GKDYIALNEDLRSWTAADTAAQITQRKWEAAREAEQRRAYLEGECVEWLRRYLENGKDKL 190 200 210 220 230 240 ERADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDR 250 260 270 TFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
RPQVPLRPM
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.