HLA-B*08:01 binding "ELRRKMMYM" at 1.60Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*08:01
ELRRKMMYM
Species
Locus / Allele group
Molecular imprint of exposure to naturally occurring genetic variants of human cytomegalovirus on the T cell repertoire.
Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
GLU
ILE66
THR163
MET5
ASN63
PHE33
TRP167
TYR171
TYR159
TYR59
TYR7
ARG62
|
P2
LEU
PHE67
TYR159
TYR7
ILE66
ASN70
ASN63
PHE36
TYR99
SER24
|
P3
ARG
ASN70
ILE66
ASN114
ASP156
TYR159
TYR99
TYR116
|
P4
ARG
ARG62
ASN70
ILE66
ASP156
|
P5
LYS
PHE22
ASP9
SER97
TYR99
ASP74
THR73
ASN70
|
P6
MET
VAL152
ASP156
GLN155
|
P7
MET
ALA150
THR73
TRP147
VAL152
SER77
LYS146
|
P8
TYR
TRP147
SER77
LYS146
THR73
GLU76
ASN80
|
P9
MET
TYR116
TRP147
ASN80
LEU81
LEU95
ILE142
SER77
THR143
ILE124
LYS146
TYR84
TYR123
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
|
B Pocket
SER24
VAL34
GLU45
ASN63
ILE66
PHE67
TYR7
ASN70
ASP9
TYR99
|
C Pocket
ASN70
THR73
ASP74
ASP9
SER97
|
D Pocket
ASN114
GLN155
ASP156
TYR159
LEU160
TYR99
|
E Pocket
ASN114
TRP147
VAL152
ASP156
SER97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*08:01
IPD-IMGT/HLA
[ipd-imgt:HLA34671] |
10 20 30 40 50 60
GSHSMRYFDTAMSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRNTQIFKTNTQTDRESLRNLRGYYNQSEAGSHTLQSMYGCDVGPDGRLLRGHNQYAYDG 130 140 150 160 170 180 KDYIALNEDLRSWTAADTAAQITQRKWEAARVAEQDRAYLEGTCVEWLRRYLENGKDTLE 190 200 210 220 230 240 RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
ELRRKMMYM
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.