Alpha This is a work in progress and may change. Your feedback is very welcome.
  


4QRP

HLA-B*08:01 presenting "HSKKKCDEL" to Alpha/Beta T cell receptor at 2.90Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide and alpha beta tcr

1. Beta 2 microglobulin
['B', 'G']
2. Class I alpha
HLA-B*08:01
['A', 'F']
3. Peptide
HSKKKCDEL
['C', 'H']
4. T cell receptor alpha
TRAV9
['D']
5. T cell receptor beta
TRBV11
['E']

Species


Locus / Allele group


Publication

An Extensive Antigenic Footprint Underpins Immunodominant TCR Adaptability against a Hypervariable Viral Determinant.

Nivarthi UK, Gras S, Kjer-Nielsen L, Berry R, Lucet IS, Miles JJ, Tracy SL, Purcell AW, Bowden DS, Hellard M, Rossjohn J, McCluskey J, Bharadwaj M
J. Immunol. (2014) [doi:10.4049/jimmunol.1401357]  [pubmed:25355921

Mutations in T cell epitopes are implicated in hepatitis C virus (HCV) persistence and can impinge on vaccine development. We recently demonstrated a narrow bias in the human TCR repertoire targeted at an immunodominant, but highly mutable, HLA-B*0801-restricted epitope ((1395)HSKKKCDEL(1403) [HSK]). To investigate if the narrow TCR repertoire facilitates CTL escape, structural and biophysical studies were undertaken, alongside comprehensive functional analysis of T cells targeted at the natural variants of HLA-B*0801-HSK in different HCV genotypes and quasispecies. Interestingly, within the TCR-HLA-B*0801-HSK complex, the TCR contacts all available surface-exposed residues of the HSK determinant. This broad epitope coverage facilitates cross-genotypic reactivity and recognition of common mutations reported in HCV quasispecies, albeit to a varying degree. Certain mutations did abrogate T cell reactivity; however, natural variants comprising these mutations are reportedly rare and transient in nature, presumably due to fitness costs. Overall, despite a narrow bias, the TCR accommodated frequent mutations by acting like a blanket over the hypervariable epitope, thereby providing effective viral immunity. Our findings simultaneously advance the understanding of anti-HCV immunity and indicate the potential for cross-genotype HCV vaccines.

Structure deposition and release

Deposited: 2014-07-02
Released: 2014-11-12
Revised: 2020-09-16

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: HSKKKCDEL

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 HIS

TRP167
PHE33
ARG62
TYR171
TYR99
ASN63
ILE66
MET5
THR163
TYR159
TYR59
TYR7
P2 SER

TYR159
PHE36
TYR7
TYR99
SER24
ASN63
ILE66
P3 LYS

ILE66
ASN114
ASP156
TYR159
ASN70
TYR99
P4 LYS

ASN70
ILE66
THR69
P5 LYS

THR69
THR73
ASP9
ASP74
SER97
TYR116
ASN70
TYR99
P6 CYS

ASN70
THR69
THR73
P7 ASP

THR73
TRP147
ALA150
VAL152
SER77
P8 GLU

LYS146
TRP147
ASN80
SER77
THR73
GLU76
P9 LEU

LEU95
TRP147
THR143
LYS146
TYR116
LEU81
SER77
TYR123
ASN80
TYR84

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
THR163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
B Pocket

SER24
VAL34
GLU45
ASN63
ILE66
PHE67
TYR7
ASN70
ASP9
TYR99
C Pocket

ASN70
THR73
ASP74
ASP9
SER97
D Pocket

ASN114
GLN155
ASP156
TYR159
LEU160
TYR99
E Pocket

ASN114
TRP147
VAL152
ASP156
SER97
F Pocket

TYR116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
LEU95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-B*08:01
IPD-IMGT/HLA
[ipd-imgt:HLA34671]
        10        20        30        40        50        60
GSHSMRYFDTAMSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DRNTQIFKTNTQTDRESLRNLRGYYNQSEAGSHTLQSMYGCDVGPDGRLLRGHNQYAYDG
       130       140       150       160       170       180
KDYIALNEDLRSWTAADTAAQITQRKWEAARVAEQDRAYLEGTCVEWLRRYLENGKDTLE
       190       200       210       220       230       240
RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP

3. Peptide
HSKKKCDEL

4. T cell receptor alpha
T cell receptor alpha
TRAV9
        10        20        30        40        50        60
MGDSVTQMEGPVTLSEEAFLTINCTYTATGYPSLFWYVQYPGEGLQLLLKATKADDKGSN
        70        80        90       100       110       120
KGFEATYRKETTSFHLEKGSVQVSDSAVYFCALSDPVNDMRFGAGTRLTVKPNIQNPDPA
       130       140       150       160       170       180
VYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNK
       190       200
SDFACANAFNNSIIPEDTFFPSPESS

5. T cell receptor beta
T cell receptor beta
TRBV11
        10        20        30        40        50        60
EAGVAQSPRYKIIEKRQSVAFWCNPISGHATLYWYQQILGQGPKLLIQFQNNGVVDDSQL
        70        80        90       100       110       120
PKDRFSAERLKGVDSTLKIQPAKLEDSAVYLCASSLRGRGDQPQHFGDGTRLSILEDLKN
       130       140       150       160       170       180
VFPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKE
       190       200       210       220       230       240
QPALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEA

WGRAD


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 4QRP assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 4QRP assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 4QRP assembly 1  
Peptide only [cif]
  1. 4QRP assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/4qrp

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes