Alpha This is a work in progress and may change. Your feedback is very welcome.
  


4PRI

HLA-B*35:08 presenting "HPVGEADYFEY" to Alpha/Beta T cell receptor at 2.40Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide and alpha beta tcr

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-B*35:08
['A']
3. Peptide
HPVGEADYFEY
['C']
4. T cell receptor alpha
TRAV20
['D']
5. T cell receptor beta
TRBV9
['E']

Species


Locus / Allele group


Publication

A Molecular Basis for the Interplay between T Cells, Viral Mutants, and Human Leukocyte Antigen Micropolymorphism.

Liu YC, Chen Z, Neller MA, Miles JJ, Purcell AW, McCluskey J, Burrows SR, Rossjohn J, Gras S
J. Biol. Chem. (2014) 289, 16688-16698 [doi:10.1074/jbc.M114.563502]  [pubmed:24759101

Mutations within T cell epitopes represent a common mechanism of viral escape from the host protective immune response. The diverse T cell repertoire and the extensive human leukocyte antigen (HLA) polymorphism across populations is the evolutionary response to viral mutation. However, the molecular basis underpinning the interplay between HLA polymorphism, the T cell repertoire, and viral escape is unclear. Here we investigate the T cell response to a HLA-B*35:01- and HLA-B*35:08-restricted (407)HPVGEADYFEY(417) epitope from Epstein-Barr virus and naturally occurring variants at positions 4 and 5 thereof. Each viral variant differently impacted on the epitope's flexibility and conformation when bound to HLA-B*35:08 or HLA-B*35:01. We provide a molecular basis for understanding how the single residue polymorphism that discriminates between HLA-B*35:01/08 profoundly impacts on T cell receptor recognition. Surprisingly, one viral variant (P5-Glu to P5-Asp) effectively changed restriction preference from HLA-B*35:01 to HLA-B*35:08. Collectively, our study portrays the interplay between the T cell response, viral escape, and HLA polymorphism, whereby HLA polymorphism enables altered presentation of epitopes from different strains of Epstein-Barr virus.

Structure deposition and release

Deposited: 2014-03-05
Released: 2014-04-16
Revised: 2017-11-22

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Undecamer (11 amino acids)

Sequence: HPVGEADYFEY

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 HIS

TRP167
TYR171
ARG62
PHE33
TYR7
LEU163
TYR159
TYR59
ASN63
ILE66
MET5
P10 GLU

LYS146
ASN80
GLU76
SER77
THR73
THR143
TRP147
P11 TYR

ILE124
TYR84
SER77
THR143
TRP147
TYR123
ILE95
ILE142
TYR74
LYS146
GLN96
ARG97
ASN80
SER116
LEU81
P2 PRO

ASN63
ILE66
PHE67
TYR9
TYR7
LEU163
TYR99
TYR159
P3 VAL

TYR99
TYR159
ILE66
GLN155
ARG97
TYR9
ARG156
P4 GLY

ARG156
ILE66
P5 GLU

ASN70
TYR99
ARG97
TYR9
ARG156
TYR74
P6 ALA

GLN155
P7 ASP

ALA150
P8 TYR

TRP147
LYS146
ALA150
P9 PHE

TRP147
ARG151
THR73
GLN155
ARG156
ALA150
VAL152
SER77

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
LEU163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
B Pocket

ALA24
VAL34
THR45
ASN63
ILE66
PHE67
TYR7
ASN70
TYR9
TYR99
C Pocket

ASN70
THR73
TYR74
TYR9
ARG97
D Pocket

ASP114
GLN155
ARG156
TYR159
LEU160
TYR99
E Pocket

ASP114
TRP147
VAL152
ARG156
ARG97
F Pocket

SER116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW
        70        80        90
SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-B*35:08
IPD-IMGT/HLA
[ipd-imgt:HLA31926]
        10        20        30        40        50        60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRTEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DRNTQIFKTNTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDG
       130       140       150       160       170       180
KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQRRAYLEGLCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP

3. Peptide
HPVGEADYFEY

4. T cell receptor alpha
T cell receptor alpha
TRAV20
        10        20        30        40        50        60
EDQVTQSPEALRLQEGESSSLNCSYTVSGLRGLFWYRQDPGKGPEFLFTLYSAGEEKEKE
        70        80        90       100       110       120
RLKATLTKKESFLHITAPKPEDSATYLCAVQDLGTSGSRLTFGEGTQLTVNPNIQNPDPA
       130       140       150       160       170       180
VYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNK
       190       200
SDFACANAFNNSIIPEDTFFPS

5. T cell receptor beta
T cell receptor beta
TRBV9
        10        20        30        40        50        60
SGVTQTPKHLITATGQRVTLRCSPRSGDLSVYWYQQSLDQGLQFLIQYYNGEERAKGNIL
        70        80        90       100       110       120
ERFSAQQFPDLHSELNLSSLELGDSALYFCASSARSGELFFGEGSRLTVLEDLKNVFPPE
       130       140       150       160       170       180
VAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPALN
       190       200       210       220       230
DSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWGRAD


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 4PRI assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 4PRI assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 4PRI assembly 1  
Peptide only [cif]
  1. 4PRI assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/4pri

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes