Alpha This is a work in progress and may change. Your feedback is very welcome.
  


4PRH

HLA-B*35:01 presenting "HPVGDADYFEY" to Alpha/Beta T cell receptor at 2.50Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide and alpha beta tcr

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-B*35:01
['A']
3. Peptide
HPVGDADYFEY
['C']
4. T cell receptor alpha
TRAV20
['D']
5. T cell receptor beta
TRBV9
['E']

Species


Locus / Allele group


Publication

A Molecular Basis for the Interplay between T Cells, Viral Mutants, and Human Leukocyte Antigen Micropolymorphism.

Liu YC, Chen Z, Neller MA, Miles JJ, Purcell AW, McCluskey J, Burrows SR, Rossjohn J, Gras S
J. Biol. Chem. (2014) 289, 16688-16698 [doi:10.1074/jbc.M114.563502]  [pubmed:24759101

Mutations within T cell epitopes represent a common mechanism of viral escape from the host protective immune response. The diverse T cell repertoire and the extensive human leukocyte antigen (HLA) polymorphism across populations is the evolutionary response to viral mutation. However, the molecular basis underpinning the interplay between HLA polymorphism, the T cell repertoire, and viral escape is unclear. Here we investigate the T cell response to a HLA-B*35:01- and HLA-B*35:08-restricted (407)HPVGEADYFEY(417) epitope from Epstein-Barr virus and naturally occurring variants at positions 4 and 5 thereof. Each viral variant differently impacted on the epitope's flexibility and conformation when bound to HLA-B*35:08 or HLA-B*35:01. We provide a molecular basis for understanding how the single residue polymorphism that discriminates between HLA-B*35:01/08 profoundly impacts on T cell receptor recognition. Surprisingly, one viral variant (P5-Glu to P5-Asp) effectively changed restriction preference from HLA-B*35:01 to HLA-B*35:08. Collectively, our study portrays the interplay between the T cell response, viral escape, and HLA polymorphism, whereby HLA polymorphism enables altered presentation of epitopes from different strains of Epstein-Barr virus.

Structure deposition and release

Deposited: 2014-03-05
Released: 2014-04-30
Revised: 2014-07-02

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Undecamer (11 amino acids)

Sequence: HPVGDADYFEY

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 HIS

TYR159
TYR59
PHE33
TYR171
TYR7
ASN63
ILE66
LEU163
MET5
ARG62
TRP167
P10 GLU

THR73
GLU76
THR143
ASN80
TRP147
LYS146
SER77
P11 TYR

LEU81
TRP147
ILE142
LYS146
SER77
ASN80
SER116
TYR84
TYR123
ILE95
THR143
ILE124
TYR74
ARG97
P2 PRO

TYR99
ASN63
ILE66
LEU163
TYR159
PHE67
TYR9
TYR7
P3 VAL

TYR99
TYR9
ARG156
GLN155
ILE66
TYR159
P4 GLY

GLN155
ILE66
ARG156
P5 ASP

ARG156
ASN70
GLN155
TYR74
ARG97
THR73
P6 ALA

GLN155
P7 ASP

ALA150
P8 TYR

TRP147
ALA150
LYS146
VAL152
P9 PHE

VAL152
TRP147
ARG151
ALA150
ARG156
GLN155

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

LEU159
CYS163
LEU167
LEU171
ARG5
TRP59
THR63
PHE66
PHE7
B Pocket

VAL24
ARG34
GLU45
THR63
PHE66
LYS67
PHE7
THR70
THR9
GLY99
C Pocket

THR70
TYR73
ARG74
THR9
MET97
D Pocket

GLN114
ARG155
ARG156
LEU159
GLU160
GLY99
E Pocket

GLN114
GLU147
ALA152
ARG156
MET97
F Pocket

ALA116
ILE123
GLN143
TRP146
GLU147
LEU77
LEU80
ARG81
TYR84
GLN95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERLEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-B*35:01
IPD-IMGT/HLA
[ipd-imgt:HLA34423]
        10        20        30        40        50        60
SHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRTEPRAPWIEQEGPEYWD
        70        80        90       100       110       120
RNTQIFKTNTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDGK
       130       140       150       160       170       180
DYIALNEDLSSWTAADTAAQITQRKWEAARVAEQRRAYLEGLCVEWLRRYLENGKETLQR
       190       200       210       220       230       240
ADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQDTELVETRPAGDRTFQK
       250       260       270
WAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWE

3. Peptide
HPVGDADYFEY

4. T cell receptor alpha
T cell receptor alpha
TRAV20
        10        20        30        40        50        60
HMEDQVTQSPEALRLQEGESSSLNCSYTVSGLRGLFWYRQDPGKGPEFLFTLYSAGEEKE
        70        80        90       100       110       120
KERLKATLTKKESFLHITAPKPEDSATYLCAVQDLGTSGSRLTFGEGTQLTVNPNIQNPD
       130       140       150       160       170       180
PAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWS
       190       200
NKSDFACANAFNNSIIPEDTFFPSPESS

5. T cell receptor beta
T cell receptor beta
TRBV9
        10        20        30        40        50        60
HMDSGVTQTPKHLITATGQRVTLRCSPRSGDLSVYWYQQSLDQGLQFLIQYYNGEERAKG
        70        80        90       100       110       120
NILERFSAQQFPDLHSELNLSSLELGDSALYFCASSARSGELFFGEGSRLTVLEDLKNVF
       130       140       150       160       170       180
PPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQP
       190       200       210       220       230       240
ALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWG

RAD


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 4PRH assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 4PRH assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 4PRH assembly 1  
Peptide only [cif]
  1. 4PRH assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/4prh

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes