HLA-B*35:01 presenting "HPVGDADYFEY" to Alpha/Beta T cell receptor at 2.50Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-B*35:01
HPVGDADYFEY
TRAV20
TRBV9
Species
Locus / Allele group
A Molecular Basis for the Interplay between T Cells, Viral Mutants, and Human Leukocyte Antigen Micropolymorphism.
Mutations within T cell epitopes represent a common mechanism of viral escape from the host protective immune response. The diverse T cell repertoire and the extensive human leukocyte antigen (HLA) polymorphism across populations is the evolutionary response to viral mutation. However, the molecular basis underpinning the interplay between HLA polymorphism, the T cell repertoire, and viral escape is unclear. Here we investigate the T cell response to a HLA-B*35:01- and HLA-B*35:08-restricted (407)HPVGEADYFEY(417) epitope from Epstein-Barr virus and naturally occurring variants at positions 4 and 5 thereof. Each viral variant differently impacted on the epitope's flexibility and conformation when bound to HLA-B*35:08 or HLA-B*35:01. We provide a molecular basis for understanding how the single residue polymorphism that discriminates between HLA-B*35:01/08 profoundly impacts on T cell receptor recognition. Surprisingly, one viral variant (P5-Glu to P5-Asp) effectively changed restriction preference from HLA-B*35:01 to HLA-B*35:08. Collectively, our study portrays the interplay between the T cell response, viral escape, and HLA polymorphism, whereby HLA polymorphism enables altered presentation of epitopes from different strains of Epstein-Barr virus.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
HIS
TYR159
TYR59
PHE33
TYR171
TYR7
ASN63
ILE66
LEU163
MET5
ARG62
TRP167
|
P10
GLU
THR73
GLU76
THR143
ASN80
TRP147
LYS146
SER77
|
P11
TYR
LEU81
TRP147
ILE142
LYS146
SER77
ASN80
SER116
TYR84
TYR123
ILE95
THR143
ILE124
TYR74
ARG97
|
P2
PRO
TYR99
ASN63
ILE66
LEU163
TYR159
PHE67
TYR9
TYR7
|
P3
VAL
TYR99
TYR9
ARG156
GLN155
ILE66
TYR159
|
P4
GLY
GLN155
ILE66
ARG156
|
P5
ASP
ARG156
ASN70
GLN155
TYR74
ARG97
THR73
|
P6
ALA
GLN155
|
P7
ASP
ALA150
|
P8
TYR
TRP147
ALA150
LYS146
VAL152
|
P9
PHE
VAL152
TRP147
ARG151
ALA150
ARG156
GLN155
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
LEU159
CYS163
LEU167
LEU171
ARG5
TRP59
THR63
PHE66
PHE7
|
B Pocket
VAL24
ARG34
GLU45
THR63
PHE66
LYS67
PHE7
THR70
THR9
GLY99
|
C Pocket
THR70
TYR73
ARG74
THR9
MET97
|
D Pocket
GLN114
ARG155
ARG156
LEU159
GLU160
GLY99
|
E Pocket
GLN114
GLU147
ALA152
ARG156
MET97
|
F Pocket
ALA116
ILE123
GLN143
TRP146
GLU147
LEU77
LEU80
ARG81
TYR84
GLN95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERLEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*35:01
IPD-IMGT/HLA
[ipd-imgt:HLA34423] |
10 20 30 40 50 60
SHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRTEPRAPWIEQEGPEYWD 70 80 90 100 110 120 RNTQIFKTNTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDGK 130 140 150 160 170 180 DYIALNEDLSSWTAADTAAQITQRKWEAARVAEQRRAYLEGLCVEWLRRYLENGKETLQR 190 200 210 220 230 240 ADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQDTELVETRPAGDRTFQK 250 260 270 WAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWE |
3. Peptide
|
HPVGDADYFEY
|
4. T cell receptor alpha
T cell receptor alpha
TRAV20
|
10 20 30 40 50 60
HMEDQVTQSPEALRLQEGESSSLNCSYTVSGLRGLFWYRQDPGKGPEFLFTLYSAGEEKE 70 80 90 100 110 120 KERLKATLTKKESFLHITAPKPEDSATYLCAVQDLGTSGSRLTFGEGTQLTVNPNIQNPD 130 140 150 160 170 180 PAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWS 190 200 NKSDFACANAFNNSIIPEDTFFPSPESS |
5. T cell receptor beta
T cell receptor beta
TRBV9
|
10 20 30 40 50 60
HMDSGVTQTPKHLITATGQRVTLRCSPRSGDLSVYWYQQSLDQGLQFLIQYYNGEERAKG 70 80 90 100 110 120 NILERFSAQQFPDLHSELNLSSLELGDSALYFCASSARSGELFFGEGSRLTVLEDLKNVF 130 140 150 160 170 180 PPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQP 190 200 210 220 230 240 ALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWG RAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.