HLA-B*35:08 presenting "LPEPLPQGQLTAY" to Alpha/Beta T cell receptor at 2.30Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-B*35:08
LPEPLPQGQLTAY
TRAV19
TRBV6
Species
Locus / Allele group
Highly divergent T-cell receptor binding modes underlie specific recognition of a bulged viral peptide bound to a human leukocyte antigen class I molecule.
Human leukocyte antigen (HLA)-I molecules can present long peptides, yet the mechanisms by which T-cell receptors (TCRs) recognize featured pHLA-I landscapes are unclear. We compared the binding modes of three distinct human TCRs, CA5, SB27, and SB47, complexed with a "super-bulged" viral peptide (LPEPLPQGQLTAY) restricted by HLA-B*35:08. The CA5 and SB27 TCRs engaged HLA-B*35:08(LPEP) similarly, straddling the central region of the peptide but making limited contacts with HLA-B*35:08. Remarkably, the CA5 TCR did not contact the α1-helix of HLA-B*35:08. Differences in the CDR3β loop between the CA5 and SB27 TCRs caused altered fine specificities. Surprisingly, the SB47 TCR engaged HLA-B*35:08(LPEP) using a completely distinct binding mechanism, namely "bypassing" the bulged peptide and making extensive contacts with the extreme N-terminal end of HLA-B*35:08. This docking footprint included HLA-I residues not observed previously as TCR contact sites. The three TCRs exhibited differing patterns of alloreactivity toward closely related or distinct HLA-I allotypes. Thus, the human T-cell repertoire comprises a range of TCRs that can interact with "bulged" pHLA-I epitopes using unpredictable strategies, including the adoption of atypical footprints on the MHC-I.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
LEU
TRP167
TYR159
TYR59
ASN63
PHE33
TYR171
TYR7
ARG62
ILE66
LEU163
MET5
|
P10
LEU
ARG156
ASN70
THR73
THR69
|
P11
THR
LYS146
TRP147
THR73
ALA150
VAL152
|
P12
ALA
LYS146
TRP147
THR73
SER77
ASN80
GLU76
|
P13
TYR
TYR84
ILE95
ILE124
ARG97
THR143
TYR123
LYS146
TRP147
LEU81
SER77
GLN96
TYR74
SER116
ASN80
|
P2
PRO
TYR99
ILE66
TYR159
TYR9
ASN63
PHE67
TYR7
|
P3
GLU
TYR9
ARG97
TYR99
ASN70
GLN155
ILE66
ASP114
ARG156
TYR159
|
P4
PRO
ARG62
LEU163
GLN155
ILE66
TYR159
|
P5
LEU
ASN70
GLN155
ILE66
THR69
GLN65
|
P6
PRO
GLN155
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
LEU163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
|
B Pocket
ALA24
VAL34
THR45
ASN63
ILE66
PHE67
TYR7
ASN70
TYR9
TYR99
|
C Pocket
ASN70
THR73
TYR74
TYR9
ARG97
|
D Pocket
ASP114
GLN155
ARG156
TYR159
LEU160
TYR99
|
E Pocket
ASP114
TRP147
VAL152
ARG156
ARG97
|
F Pocket
SER116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
ILE95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*35:08
IPD-IMGT/HLA
[ipd-imgt:HLA31926] |
10 20 30 40 50 60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRTEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRNTQIFKTNTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQRRAYLEGLCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
LPEPLPQGQLTAY
|
4. T cell receptor alpha
T cell receptor alpha
TRAV19
|
10 20 30 40 50 60
QKVTQAQTEISVVEKEDVTLDCVYETRDTTYYLFWYKQPPSGELVFLIRRNSFDEQNEIS 70 80 90 100 110 120 GRYSWNFQKSTSSFNFTITASQVVDSAVYFCALSGFYNTDKLIFGTGTRLQVFPNIQNPD 130 140 150 160 170 180 PAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWS 190 200 NKSDFACANAFNNSIIPQDTFFPS |
5. T cell receptor beta
T cell receptor beta
TRBV6
|
10 20 30 40 50 60
GVTQTPKFQVLKTGQSMTLQCAQDMNHNSMYWYRQDPGMGLRLIYYSASEGTTDKGEVPN 70 80 90 100 110 120 GYNVSRLNKREFSLRLESAAPSQTSVYFCASPGETEAFFGQGTRLTVTEDLKNVFPPEVA 130 140 150 160 170 180 VFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPALNDS 190 200 210 220 230 RYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWGRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.