H2-Db presenting "SSLENFRAYV" to Alpha/Beta T cell receptor at 3.19Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
H2-Db
SSLENFRAYV
TRAV21
TRBV29
Species
Locus / Allele group
Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses.
Pathogen-specific responses are characterized by preferred profiles of peptide+class I MHC (pMHCI) glycoprotein-specific T-cell receptor (TCR) Variable (V)-region use. How TCRV-region bias impacts TCRαβ heterodimer selection and resultant diversity is unclear. The D(b)PA(224)-specific TCR repertoire in influenza A virus-infected C57BL/6J (B6) mice exhibits a preferred TCRV-region bias toward the TRBV29 gene segment and an optimal complementarity determining region (CDR3) β-length of 6 aa. Despite these restrictions, D(b)PA(224)-specific BV29(+) T cells use a wide array of unique CDR3β sequences. Structural characterization of a single, TRBV29(+)D(b)P(A224)-specific TCRαβ-pMHCI complex demonstrated that CDR3α amino acid side chains made specific peptide interactions, but the CDR3β main chain exclusively contacted peptides. Thus, length but not amino acid sequence was key for recognition and flexibility in Vβ-region use. In support of this hypothesis, retrovirus expression of the D(b)PA(224)-specific TCRVα-chain was used to constrain pairing within a naive/immune epitope-specific repertoire. The retrogenic TCRVα paired with a diversity of CDR3βs in the context of a preferred TCRVβ spectrum. Overall, these data provide an explanation for the combination of TCRV region bias and diversity within selected repertoires, even as they maintain exquisite pMHCI specificity.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
SER
MET5
TRP167
TYR59
TYR7
ARG62
LYS66
TYR171
TYR159
GLU63
GLU163
|
P10
VAL
LEU95
TYR123
TRP147
LEU81
TRP73
SER77
ASN80
LYS146
THR143
TYR84
|
P2
SER
TYR159
GLU63
GLU163
TYR7
LYS66
TYR45
|
P3
LEU
SER99
TYR7
GLU9
TYR159
LEU114
HIS155
GLN70
TYR156
GLN97
|
P4
GLU
HIS155
GLN70
LYS66
|
P5
ASN
GLU9
TRP73
PHE116
HIS155
GLN70
PHE74
TYR156
GLN97
|
P6
PHE
HIS155
GLY151
TYR156
TRP73
ALA152
SER150
|
P7
ARG
TRP73
|
P8
ALA
TRP147
SER150
TRP73
LYS146
|
P9
TYR
SER77
LYS146
THR143
TRP147
TRP73
VAL76
ASN80
GLN72
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
LEU159
CYS163
LEU167
LEU171
ARG5
TRP59
THR63
ALA66
PHE7
|
B Pocket
VAL24
ARG34
GLU45
THR63
ALA66
LYS67
PHE7
GLU70
THR9
GLY99
|
C Pocket
GLU70
PHE73
ARG74
THR9
MET97
|
D Pocket
GLN114
TYR155
LYS156
LEU159
GLU160
GLY99
|
E Pocket
GLN114
GLU147
ALA152
LYS156
MET97
|
F Pocket
ALA116
ILE123
ARG143
TRP146
GLU147
LEU77
LEU80
LEU81
TYR84
GLN95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKDW 70 80 90 SFYILAHTEFTPTETDTYACRVKHDSMAEPKTVYWDRDM |
2. Class I alpha
H2-Db
|
10 20 30 40 50 60
PHSMRYFETAVSRPGLEEPRYISVGYVDNKEFVRFDSDAENPRYEPRAPWMEQEGPEYWE 70 80 90 100 110 120 RETQKAKGQEQWFRVSLRNLLGYYNQSAGGSHTLQQMSGCDLGSDWRLLRGYLQFAYEGR 130 140 150 160 170 180 DYIALNEDLKTWTAADMAAQITRRKWEQSGAAEHYKAYLEGECVEWLHRYLKNGNATLLR 190 200 210 220 230 240 TDSPKAHVTHHPRSKGEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDGTF 250 260 270 QKWASVVVPLGKEQNYTCRVYHEGLPEPLTLRWEP |
3. Peptide
|
SSLENFRAYV
|
4. T cell receptor alpha
T cell receptor alpha
TRAV21
|
10 20 30 40 50 60
KTTQPDSMESTEGETVHLPCSHATISGNEYIYWYRQVPLQGPEYVTHGLQQNTTNSMAFL 70 80 90 100 110 120 AIASDRKSSTLILPHVSLRDAAVYHCILSGGSNYKLTFGKGTLLTVTPIQNPDPAVYQLR 130 140 150 160 170 180 DSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDFAC 190 ANAFNNSIIPEDTFF |
5. T cell receptor beta
T cell receptor beta
TRBV29
|
10 20 30 40 50 60
DMKVTQMPRYLIKRMGENVLLECGQDMSHETMYWYRQDPGLGLQLIYISYDVDSNSEGDI 70 80 90 100 110 120 PKGYRVSRKKREHFSLILDSAKTNQTSVYFCASSFGREQYFGPGTRLTVLEDLKNVFPPE 130 140 150 160 170 180 VAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPALN 190 200 210 220 230 DSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWGRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.