Alpha This is a work in progress and may change. Your feedback is very welcome.
  


3L3H

H2-Db binding "SSLENARAYV" at 2.70Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
H2-Db
['A']
3. Peptide
SSLENARAYV
['C']

Species


Locus / Allele group


Publication

Constraints within major histocompatibility complex class I restricted peptides: presentation and consequences for T-cell recognition.

Theodossis A, Guillonneau C, Welland A, Ely LK, Clements CS, Williamson NA, Webb AI, Wilce JA, Mulder RJ, Dunstone MA, Doherty PC, McCluskey J, Purcell AW, Turner SJ, Rossjohn J
Proc. Natl. Acad. Sci. U.S.A. (2010) 107, 5534-9 [doi:10.1073/pnas.1000032107]  [pubmed:20212169

Residues within processed protein fragments bound to major histocompatibility complex class I (MHC-I) glycoproteins have been considered to function as a series of "independent pegs" that either anchor the peptide (p) to the MHC-I and/or interact with the spectrum of alphabeta-T-cell receptors (TCRs) specific for the pMHC-I epitope in question. Mining of the extensive pMHC-I structural database established that many self- and viral peptides show extensive and direct interresidue interactions, an unexpected finding that has led us to the idea of "constrained" peptides. Mutational analysis of two constrained peptides (the HLA B44 restricted self-peptide (B44DPalpha-EEFGRAFSF) and an H2-D(b) restricted influenza peptide (D(b)PA, SSLENFRAYV) demonstrated that the conformation of the prominently exposed arginine in both peptides was governed by interactions with MHC-I-orientated flanking residues from the peptide itself. Using reverse genetics in a murine influenza model, we revealed that mutation of an MHC-I-orientated residue (SSLENFRAYV --> SSLENARAYV) within the constrained PA peptide resulted in a diminished cytotoxic T lymphocyte (CTL) response and the recruitment of a limited pMHC-I specific TCR repertoire. Interactions between individual peptide positions can thus impose fine control on the conformation of pMHC-I epitopes, whereas the perturbation of such constraints can lead to a previously unappreciated mechanism of viral escape.

Structure deposition and release

Deposited: 2009-12-17
Released: 2010-03-16
Revised: 2021-11-10

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Decamer (10 amino acids)

Sequence: SSLENARAYV

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 SER

TYR7
TRP167
TYR159
TYR59
GLU163
ARG62
LYS66
GLU63
TYR171
MET5
P10 VAL

LEU81
TRP73
TYR84
ASN80
LEU95
ILE142
SER77
THR143
TYR123
TRP147
LYS146
P2 SER

TYR7
TYR45
TYR159
GLU163
LYS66
GLU63
P3 LEU

TYR156
LEU114
HIS155
GLN97
GLN70
TYR159
SER99
GLU9
LYS66
P4 GLU

GLN65
TYR156
GLY69
HIS155
GLN70
LYS66
P5 ASN

TYR156
LEU114
PHE116
HIS155
GLN97
GLN70
TRP73
GLU9
PHE74
P6 ALA

HIS155
ALA152
TRP73
TYR156
P7 ARG

TRP73
P8 ALA

TRP147
TRP73
SER150
ALA152
TYR156
P9 TYR

TRP147
VAL76
TRP73
SER77
ASN80
GLN72
THR143
LYS146

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

LEU159
CYS163
LEU167
LEU171
ARG5
TRP59
THR63
ALA66
PHE7
B Pocket

VAL24
ARG34
GLU45
THR63
ALA66
LYS67
PHE7
GLU70
THR9
GLY99
C Pocket

GLU70
PHE73
ARG74
THR9
MET97
D Pocket

GLN114
TYR155
LYS156
LEU159
GLU160
GLY99
E Pocket

GLN114
GLU147
ALA152
LYS156
MET97
F Pocket

ALA116
ILE123
ARG143
TRP146
GLU147
LEU77
LEU80
LEU81
TYR84
GLN95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
IQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKDW
        70        80        90
SFYILAHTEFTPTETDTYACRVKHDSMAEPKTVYWDRDM

2. Class I alpha
H2-Db
        10        20        30        40        50        60
PHSMRYFETAVSRPGLEEPRYISVGYVDNKEFVRFDSDAENPRYEPRAPWMEQEGPEYWE
        70        80        90       100       110       120
RETQKAKGQEQWFRVSLRNLLGYYNQSAGGSHTLQQMSGCDLGSDWRLLRGYLQFAYEGR
       130       140       150       160       170       180
DYIALNEDLKTWTAADMAAQITRRKWEQSGAAEHYKAYLEGECVEWLHRYLKNGNATLLR
       190       200       210       220       230       240
TDSPKAHVTHHPRSKGEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDGTF
       250       260       270
QKWASVVVPLGKEQNYTCRVYHEGLPEPLTLRWEP

3. Peptide
SSLENARAYV


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 3L3H assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 3L3H assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 3L3H assembly 1  
Peptide only [cif]
  1. 3L3H assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/3l3h

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes