Alpha This is a work in progress and may change. Your feedback is very welcome.
  


3KWW

HLA-B*35:01 binding "LPEPLPQGQLTAY" at 2.18Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-B*35:01
['A']
3. Peptide
LPEPLPQGQLTAY
['C']

Species


Locus / Allele group


Publication

Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability.

Burrows SR, Chen Z, Archbold JK, Tynan FE, Beddoe T, Kjer-Nielsen L, Miles JJ, Khanna R, Moss DJ, Liu YC, Gras S, Kostenko L, Brennan RM, Clements CS, Brooks AG, Purcell AW, McCluskey J, Rossjohn J
Proc. Natl. Acad. Sci. U.S.A. (2010) 107, 10608-13 [doi:10.1073/pnas.1004926107]  [pubmed:20483993

alphabeta T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR-pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR-pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR-pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.

Structure deposition and release

Deposited: 2009-12-01
Released: 2010-06-09
Revised: 2017-11-01

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Tridecamer (13 amino acids)

Sequence: LPEPLPQGQLTAY

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 LEU

PHE33
MET5
ARG62
TYR171
LEU163
TYR7
ASN63
TRP167
TYR159
TYR59
P10 LEU

THR73
ASN70
ILE66
ALA69
P11 THR

LYS146
VAL152
ALA150
TRP147
THR73
P12 ALA

THR73
SER77
ASN80
LYS146
GLU76
TRP147
P13 TYR

GLN96
TYR74
ARG97
ILE95
ASN80
LEU81
TRP147
ILE142
SER77
ILE124
SER116
THR143
LYS146
TYR123
TYR84
P2 PRO

PHE67
TYR159
TYR9
TYR7
TYR99
ASN63
ILE66
P3 GLU

TYR99
ARG156
ILE66
ARG97
TYR9
TYR159
P4 PRO

TYR159
ARG62
ILE66
LEU163
P5 LEU

ALA65
ALA69
ASN70
ILE66

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
LEU163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
B Pocket

ALA24
VAL34
THR45
ASN63
ILE66
PHE67
TYR7
ASN70
TYR9
TYR99
C Pocket

ASN70
THR73
TYR74
TYR9
ARG97
D Pocket

ASP114
ALA155
ARG156
TYR159
LEU160
TYR99
E Pocket

ASP114
TRP147
VAL152
ARG156
ARG97
F Pocket

SER116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW
        70        80        90
SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-B*35:01
IPD-IMGT/HLA
[ipd-imgt:HLA34423]
        10        20        30        40        50        60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRTEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DRNTAIFKANTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDG
       130       140       150       160       170       180
KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEARRAYLEGLCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP

3. Peptide
LPEPLPQGQLTAY


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 3KWW assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 3KWW assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 3KWW assembly 1  
Peptide only [cif]
  1. 3KWW assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/3kww

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes