Alpha This is a work in progress and may change. Your feedback is very welcome.
  


3FTG

H2-Db binding "ASAENMETM" at 2.60Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
H2-Db
['A']
3. Peptide
ASAENMETM
['C']

Species


Locus / Allele group


Publication

Protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depends on peptide-MHC-I structural interactions and T cell activation threshold.

Valkenburg SA, Gras S, Guillonneau C, La Gruta NL, Thomas PG, Purcell AW, Rossjohn J, Doherty PC, Turner SJ, Kedzierska K
PLoS Pathog. (2010) 6, e1001039 [doi:10.1371/journal.ppat.1001039]  [pubmed:20711359

Emergence of a new influenza strain leads to a rapid global spread of the virus due to minimal antibody immunity. Pre-existing CD8(+) T-cell immunity directed towards conserved internal viral regions can greatly ameliorate the disease. However, mutational escape within the T cell epitopes is a substantial issue for virus control and vaccine design. Although mutations can result in a loss of T cell recognition, some variants generate cross-reactive T cell responses. In this study, we used reverse genetics to modify the influenza NP(336-374) peptide at a partially-solvent exposed residue (N->A, NPN3A mutation) to assess the availability, effectiveness and mechanism underlying influenza-specific cross-reactive T cell responses. The engineered virus induced a diminished CD8(+) T cell response and selected a narrowed T cell receptor (TCR) repertoire within two V beta regions (V beta 8.3 and V beta 9). This can be partially explained by the H-2D(b)NPN3A structure that showed a loss of several contacts between the NPN3A peptide and H-2D(b), including a contact with His155, a position known to play an important role in mediating TCR-pMHC-I interactions. Despite these differences, common cross-reactive TCRs were detected in both the naïve and immune NPN3A-specific TCR repertoires. However, while the NPN3A epitope primes memory T-cells that give an equivalent recall response to the mutant or wild-type (wt) virus, both are markedly lower than wt->wt challenge. Such decreased CD8(+) responses elicited after heterologous challenge resulted in delayed viral clearance from the infected lung. Furthermore, mice first exposed to the wt virus give a poor, low avidity response following secondary infection with the mutant. Thus, the protective efficacy of cross-reactive CD8(+) T cells recognising mutant viral epitopes depend on peptide-MHC-I structural interactions and functional avidity. Our study does not support vaccine strategies that include immunization against commonly selected cross-reactive variants with mutations at partially-solvent exposed residues that have characteristics comparable to NPN3A.

Structure deposition and release

Deposited: 2009-01-12
Released: 2009-12-29
Revised: 2012-02-29

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: ASAENMETM

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 ALA

TRP167
TYR159
TYR59
LYS66
GLU163
GLU63
PHE33
MET5
TYR171
TYR7
P2 SER

TYR159
LYS66
GLU63
TYR45
TYR7
P3 ALA

GLN70
TYR159
TYR7
LYS66
SER99
P4 GLU

HIS155
LYS66
TYR156
GLN70
P5 ASN

TYR156
GLN97
GLN70
TRP73
PHE74
PHE116
LEU114
P6 MET

TRP73
HIS155
TYR156
P7 GLU

TYR156
LYS146
TRP147
TRP73
SER150
P8 THR

ASN80
LYS146
TRP147
TRP73
SER77
THR143
VAL76
P9 MET

SER77
TYR123
ASN80
LYS146
PHE116
LEU81
TRP147
ILE142
TRP73
ILE124
TYR84
LEU95
THR143

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

ALA159
GLY163
GLU167
ARG171
SER5
GLU59
ARG63
GLN66
ARG7
B Pocket

ILE24
PHE34
ARG45
ARG63
GLN66
LYS67
ARG7
GLY70
PHE9
MET99
C Pocket

GLY70
GLN73
TRP74
PHE9
GLN97
D Pocket

TYR114
GLU155
HIS156
ALA159
TYR160
MET99
E Pocket

TYR114
LYS147
GLY152
HIS156
GLN97
F Pocket

GLN116
ASP123
ILE143
ARG146
LYS147
VAL77
ARG80
ASN81
GLY84
THR95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKD
        70        80        90
WSFYILAHTEFTPTETDTYACRVKHDSMAEPKTVYWDRDM

2. Class I alpha
H2-Db
        10        20        30        40        50        60
MGPHSMRYFETAVSRPGLEEPRYISVGYVDNKEFVRFDSDAENPRYEPRAPWMEQEGPEY
        70        80        90       100       110       120
WERETQKAKGQEQWFRVSLRNLLGYYNQSAGGSHTLQQMSGCDLGSDWRLLRGYLQFAYE
       130       140       150       160       170       180
GRDYIALNEDLKTWTAADMAAQITRRKWEQSGAAEHYKAYLEGECVEWLHRYLKNGNATL
       190       200       210       220       230       240
LRTDSPKAHVTHHPRSKGEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDG
       250       260       270       280
TFQKWASVVVPLGKEQNYTCRVYHEGLPEPLTLRWEPPPST

3. Peptide
ASAENMETM


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 3FTG assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 3FTG assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 3FTG assembly 1  
Peptide only [cif]
  1. 3FTG assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/3ftg

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes