HLA-B*14:02 binding "IRAAPPPLF" at 1.86Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*14:02
IRAAPPPLF
Species
Locus / Allele group
Structural basis for T cell alloreactivity among three HLA-B14 and HLA-B27 antigens.
The existence of cytotoxic T cells (CTL) cross-reacting with the human major histocompatibility antigens HLA-B14 and HLA-B27 suggests that their alloreactivity could be due to presentation of shared peptides in similar binding modes by these molecules. We therefore determined the crystal structures of the subtypes HLA-B*1402, HLA-B*2705, and HLA-B*2709 in complex with a proven self-ligand, pCatA (peptide with the sequence IRAAPPPLF derived from cathepsin A (residues 2-10)), and of HLA-B*1402 in complex with a viral peptide, pLMP2 (RRRWRRLTV, derived from latent membrane protein 2 (residues 236-244) of Epstein-Barr virus). Despite the exchange of 18 residues within the binding grooves of HLA-B*1402 and HLA-B*2705 or HLA-B*2709, the pCatA peptide is presented in nearly identical conformations. However, pLMP2 is displayed by HLA-B*1402 in a conformation distinct from those previously found in the two HLA-B27 subtypes. In addition, the complexes of HLA-B*1402 with the two peptides reveal a nonstandard, tetragonal mode of the peptide N terminus anchoring in the binding groove because of the exchange of the common Tyr-171 by His-171 of the HLA-B*1402 heavy chain. This exchange appears also responsible for reduced stability of HLA-B14-peptide complexes in vivo and slow assembly in vitro. The studies with the pCatA peptide uncover that CTL cross-reactive between HLA-B14 and HLA-B27 might primarily recognize the common structural features of the bound peptide, thus neglecting amino acid replacements within the rim of the binding grooves. In contrast, structural alterations between the three complexes with the pLMP2 peptide indicate how heavy chain polymorphisms can influence peptide display and prevent CTL cross-reactivity between HLA-B14 and HLA-B27 antigens.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ILE
TYR59
ASN63
ILE66
MET5
TYR159
THR163
ARG62
TRP167
TYR7
HIS171
|
P2
ARG
VAL34
TYR159
TYR7
VAL25
CYS67
GLU45
TYR99
ASN63
ARG35
ILE66
GLY26
PHE36
SER24
TYR9
|
P3
ALA
TYR9
TYR159
TRP97
TYR99
ILE66
|
P4
ALA
ASN70
ILE66
TRP97
|
P5
PRO
THR69
THR73
ASN70
GLU152
ILE66
TRP97
|
P6
PRO
TRP147
TRP97
PHE116
THR73
ASN70
GLU152
|
P7
PRO
GLU152
TRP147
ALA150
SER77
|
P8
LEU
TRP147
ASN80
GLU76
LYS146
SER77
THR73
|
P9
PHE
SER77
PHE116
ILE142
THR143
TRP147
LEU95
ASN80
ILE124
TYR123
LEU81
TYR84
LYS146
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
ALA159
GLY163
GLU167
ARG171
SER5
GLU59
ARG63
GLN66
ARG7
|
B Pocket
ILE24
PHE34
ARG45
ARG63
GLN66
ILE67
ARG7
THR70
PHE9
MET99
|
C Pocket
THR70
GLN73
THR74
PHE9
GLN97
|
D Pocket
TYR114
GLU155
GLN156
ALA159
TYR160
MET99
|
E Pocket
TYR114
LYS147
ARG152
GLN156
GLN97
|
F Pocket
GLN116
ASP123
ILE143
ARG146
LYS147
GLU77
ARG80
ASN81
GLY84
THR95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*14:02
IPD-IMGT/HLA
[ipd-imgt:HLA32021] |
10 20 30 40 50 60
MGSHSMRYFYTAVSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPEY 70 80 90 100 110 120 WDRNTQICKTNTQTDRESLRNLRGYYNQSEAGSHTLQWMYGCDVGPDGRLLRGYNQFAYD 130 140 150 160 170 180 GKDYIALNEDLSSWTAADTAAQITQRKWEAAREAEQLRAYLEGTCVEWLRRHLENGKETL 190 200 210 220 230 240 QRADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDR 250 260 270 TFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEPS |
3. Peptide
|
IRAAPPPLF
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.