HLA-B*27:09 binding "IRAAPPPLF" at 1.80Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*27:09
IRAAPPPLF
Species
Locus / Allele group
Structural basis for T cell alloreactivity among three HLA-B14 and HLA-B27 antigens.
The existence of cytotoxic T cells (CTL) cross-reacting with the human major histocompatibility antigens HLA-B14 and HLA-B27 suggests that their alloreactivity could be due to presentation of shared peptides in similar binding modes by these molecules. We therefore determined the crystal structures of the subtypes HLA-B*1402, HLA-B*2705, and HLA-B*2709 in complex with a proven self-ligand, pCatA (peptide with the sequence IRAAPPPLF derived from cathepsin A (residues 2-10)), and of HLA-B*1402 in complex with a viral peptide, pLMP2 (RRRWRRLTV, derived from latent membrane protein 2 (residues 236-244) of Epstein-Barr virus). Despite the exchange of 18 residues within the binding grooves of HLA-B*1402 and HLA-B*2705 or HLA-B*2709, the pCatA peptide is presented in nearly identical conformations. However, pLMP2 is displayed by HLA-B*1402 in a conformation distinct from those previously found in the two HLA-B27 subtypes. In addition, the complexes of HLA-B*1402 with the two peptides reveal a nonstandard, tetragonal mode of the peptide N terminus anchoring in the binding groove because of the exchange of the common Tyr-171 by His-171 of the HLA-B*1402 heavy chain. This exchange appears also responsible for reduced stability of HLA-B14-peptide complexes in vivo and slow assembly in vitro. The studies with the pCatA peptide uncover that CTL cross-reactive between HLA-B14 and HLA-B27 might primarily recognize the common structural features of the bound peptide, thus neglecting amino acid replacements within the rim of the binding grooves. In contrast, structural alterations between the three complexes with the pLMP2 peptide indicate how heavy chain polymorphisms can influence peptide display and prevent CTL cross-reactivity between HLA-B14 and HLA-B27 antigens.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ILE
MET5
ARG62
TYR159
TYR59
TYR7
GLU163
TYR99
GLU63
TRP167
TYR171
|
P2
ARG
GLU45
TYR99
THR24
GLU63
CYS67
GLY26
ARG62
VAL34
TYR159
TYR7
VAL25
HIS9
ILE66
GLU163
|
P3
ALA
TYR99
ILE66
TYR159
ARG62
|
P4
ALA
GLN155
ARG62
LEU156
ILE66
|
P5
PRO
LYS70
ILE66
GLN155
THR73
|
P6
PRO
TRP147
HIS114
VAL152
LEU156
GLN155
HIS116
|
P7
PRO
TRP147
ALA150
ASP77
VAL152
|
P8
LEU
GLU76
LYS146
THR73
TRP147
ASP77
THR143
|
P9
PHE
TYR123
LYS146
LEU81
LEU95
THR80
TRP147
ILE142
ASP77
THR143
HIS116
TYR84
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
GLU163
TRP167
TYR171
MET5
TYR59
GLU63
ILE66
TYR7
|
B Pocket
THR24
VAL34
GLU45
GLU63
ILE66
CYS67
TYR7
LYS70
HIS9
TYR99
|
C Pocket
LYS70
THR73
ASP74
HIS9
ASN97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ASN97
|
F Pocket
HIS116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*27:09
IPD-IMGT/HLA
[ipd-imgt:HLA00230] |
10 20 30 40 50 60
GSHSMRYFHTSVSRPGRGEPRFITVGYVDDTLFVRFDSDAASPREEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRETQICKAKAQTDREDLRTLLRYYNQSEAGSHTLQNMYGCDVGPDGRLLRGYHQHAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGECVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
IRAAPPPLF
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.