HLA-B*57:06 presenting "KAFSPEVIPMF" to Alpha/Beta T cell receptor at 2.40Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-B*57:06
KAFSPEVIPMF
TRAV5
TRBV19
Species
Locus / Allele group
Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms.
Polymorphic differences distinguishing MHC class I subtypes often permit the presentation of shared epitopes in conformationally identical formats but can affect T-cell repertoire selection, differentially impacting autoimmune susceptibilities and viral clearance in vivo. The molecular mechanisms underlying this effect are not well understood. We performed structural, thermodynamic, and functional analyses of a conserved T-cell receptor (TCR) which is frequently expanded in response to a HIV-1 epitope when presented by HLA-B*5701 but is not selected by HLA-B*5703, which differs from HLA-B*5701 by two concealed polymorphisms. Our findings illustrate that although both HLA-B*57 subtypes display the epitope in structurally conserved formats, the impact of their polymorphic differences occurs directly as a consequence of TCR ligation, primarily because of peptide adjustments required for TCR binding, which involves the interplay of polymorphic residues and water molecules. These minor differences culminate in subtype-specific differential TCR-binding kinetics and cellular function. Our data demonstrate a potential mechanism whereby the most subtle MHC class I micropolymorphisms can influence TCR use and highlight their implications for disease outcomes.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
LYS
TYR171
TRP167
GLU63
TYR159
MET5
TYR59
TYR7
|
P10
MET
ILE80
ILE143
LYS146
TRP147
ASN77
|
P11
PHE
TYR116
TYR123
ALA81
ILE95
TRP147
ASN77
ILE80
TYR84
ILE142
ILE143
LYS146
|
P2
ALA
TYR159
TYR7
ASN66
TYR9
MET67
MET45
TYR99
GLU63
|
P3
PHE
LEU156
GLN155
SER70
TYR159
ASN66
TYR9
TYR99
|
P4
SER
ASN66
|
P5
PRO
GLN155
ASN66
|
P6
GLU
GLN155
|
P7
VAL
GLN155
VAL152
ALA150
|
P8
ILE
THR73
GLN155
VAL152
TRP147
|
P9
PRO
THR73
ASN77
VAL152
TRP147
TYR74
TYR116
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
LEU163
TRP167
TYR171
MET5
TYR59
GLU63
ASN66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
ASN66
MET67
TYR7
SER70
TYR9
TYR99
|
C Pocket
SER70
THR73
TYR74
TYR9
VAL97
|
D Pocket
ASP114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
ASP114
TRP147
VAL152
LEU156
VAL97
|
F Pocket
TYR116
TYR123
ILE143
LYS146
TRP147
ASN77
ILE80
ALA81
TYR84
ILE95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*57:06
IPD-IMGT/HLA
[ipd-imgt:HLA01074] |
10 20 30 40 50 60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRMAPRAPWIEQEGPEYW 70 80 90 100 110 120 DGETRNMKASAQTYRENLRIALRYYNQSEAGSHIIQVMYGCDVGPDGRLLRGHDQYAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQIIQRKWEAARVAEQLRAYLEGLCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRW |
3. Peptide
|
KAFSPEVIPMF
|
4. T cell receptor alpha
T cell receptor alpha
TRAV5
|
10 20 30 40 50 60
EDVEQSLFLSVREGDSSVINCTYTDSSSTYLYWYKQEPGAGLQLLTYIFSNMDMKQDQRL 70 80 90 100 110 120 TVLLNKKDKHLSLRIADTQTGDSAIYFCAVSGGYQKVTFGIGTKLQVIPNIQNPDPAVYQ 130 140 150 160 170 180 LRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDF 190 ACANAFNNSIIPEDTFFPS |
5. T cell receptor beta
T cell receptor beta
TRBV19
|
10 20 30 40 50 60
GITQSPKYLFRKEGQNVTLSCEQNLNHDAMYWYRQDPGQGLRLIYYSQIVNDFQKGDIAE 70 80 90 100 110 120 GYSVSREKKESFPLTVTSAQKNPTAFYLCASTGSYGYTFGSGTRLTVTEDLKNVFPPEVA 130 140 150 160 170 180 VFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPALNDS 190 200 210 220 230 RYSLSSRLRVSATFWQNPRNHFRCQVQFTGSRRMTSGPRIGPKPVTQIVSAEAWGRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.