HLA-A*02:01 presenting "GILGFVFTL" to Alpha/Beta T cell receptor at 2.40Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
Class i with peptide and alpha beta tcr
HLA-A*02:01
GILGFVFTL
TRAV27
TRBV19
Species
Locus / Allele group
The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vbeta domain.
Immunodominant and public T cell receptor (TCR) usage is relatively common in many viral diseases yet surprising in the context of the large naive TCR repertoire. We examined the highly conserved Vbeta17:Valpha10.2 JM22 T cell response to the influenza matrix peptide (58-66)-HLA-A*0201 (HLA-A2-flu) through extensive kinetic, thermodynamic, and structural analyses. We found several conformational adjustments that accompany JM22-HLA-A2-flu binding and identified a binding "hotspot" within the Vbeta domain of the TCR. Within this hotspot, key germline-encoded CDR1 and CDR2 loop residues and a crucial but commonly coded residue in the hypervariable region of CDR3 provide the basis for the substantial bias in the selection of the germline-encoded Vbeta17 domain. The chances of having a substantial number of T cells in the naive repertoire that have HLA-A2-flu-specific Vbeta17 receptors may consequently be relatively high, thus explaining the immunodominant usage of this clonotype.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
GLY
LYS66
TYR7
GLU63
TRP167
MET5
TYR59
TYR171
TYR159
|
P2
ILE
GLU63
PHE9
MET45
VAL67
TYR159
TYR99
LYS66
TYR7
HIS70
|
P3
LEU
LEU156
LYS66
HIS114
ARG97
TYR99
TYR159
HIS70
|
P4
GLY
LYS66
|
P5
PHE
GLN155
TYR159
HIS70
LEU156
|
P6
VAL
HIS70
LYS66
ALA69
THR73
|
P7
PHE
ARG97
THR73
TRP147
TYR116
VAL152
ASP77
LEU156
HIS114
|
P8
THR
VAL76
THR73
TRP147
ASP77
LYS146
|
P9
LEU
TRP147
THR80
TYR116
LEU81
ASP77
TYR84
THR143
TYR123
LYS146
ILE124
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
PHE9
TYR99
|
C Pocket
HIS70
THR73
HIS74
PHE9
ARG97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ARG97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
VAL95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*02:01
IPD-IMGT/HLA
[ipd-imgt:HLA35266] |
10 20 30 40 50 60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDG 130 140 150 160 170 180 KDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
GILGFVFTL
|
4. T cell receptor alpha
T cell receptor alpha
TRAV27
|
10 20 30 40 50 60
MQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEVKKLKR 70 80 90 100 110 120 LTFQFGDARKDSSLHITAAQPGDTGLYLCAGAGSQGNLIFGKGTKLSVKPNIQNPDPAVY 130 140 150 160 170 180 QLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKTVLDMRSMDFKSNSAVAWSNKSD 190 200 FACANAFNNSIIPEDTFFPSK |
5. T cell receptor beta
T cell receptor beta
TRBV19
|
10 20 30 40 50 60
MVDGGITQSPKYLFRKEGQNVTLSCEQNLNHDAMYWYRQDPGQGLRLIYYSQIVNDFQKG 70 80 90 100 110 120 DIAEGYSVSREKKESFPLTVTSAQKNPTAFYLCASSSRSSYEQYFGPGTRLTVTEDLKNV 130 140 150 160 170 180 FPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVSTDPQPLKEQ 190 200 210 220 230 240 PALNDSRYSLSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAW GRAD |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.