Alpha This is a work in progress and may change. Your feedback is very welcome.
  


2RFX

HLA-B*57:01 binding "LSSPVTKSF" at 2.50Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-B*57:01
['A']
3. Peptide
LSSPVTKSF
['C']

Species


Locus / Allele group


Publication

Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity.

Chessman D, Kostenko L, Lethborg T, Purcell AW, Williamson NA, Chen Z, Kjer-Nielsen L, Mifsud NA, Tait BD, Holdsworth R, Almeida CA, Nolan D, Macdonald WA, Archbold JK, Kellerher AD, Marriott D, Mallal S, Bharadwaj M, Rossjohn J, McCluskey J
Immunity (2008) 28, 822-32 [doi:10.1016/j.immuni.2008.04.020]  [pubmed:18549801

The basis for strong immunogenetic associations between particular human leukocyte antigen (HLA) class I allotypes and inflammatory conditions like Behçet's disease (HLA-B51) and ankylosing spondylitis (HLA-B27) remain mysterious. Recently, however, even stronger HLA associations are reported in drug hypersensitivities to the reverse-transcriptase inhibitor abacavir (HLA-B57), the gout prophylactic allopurinol (HLA-B58), and the antiepileptic carbamazepine (HLA-B*1502), providing a defined disease trigger and suggesting a general mechanism for these associations. We show that systemic reactions to abacavir were driven by drug-specific activation of cytokine-producing, cytotoxic CD8+ T cells. Recognition of abacavir required the transporter associated with antigen presentation and tapasin, was fixation sensitive, and was uniquely restricted by HLA-B*5701 and not closely related HLA allotypes with polymorphisms in the antigen-binding cleft. Hence, the strong association of HLA-B*5701 with abacavir hypersensitivity reflects specificity through creation of a unique ligand as well as HLA-restricted antigen presentation, suggesting a basis for the strong HLA class I-association with certain inflammatory disorders.

Structure deposition and release

Deposited: 2007-10-02
Released: 2008-07-08
Revised: 2017-10-25

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: LSSPVTKSF

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 LEU

TYR171
TYR159
TYR59
CYS164
PHE33
LEU163
TRP167
GLU63
MET5
TYR7
P2 SER

GLU63
MET67
TYR159
TYR9
TYR7
TYR99
MET45
ASN66
P3 SER

ASN66
TYR159
LEU156
TYR9
SER70
TYR99
P4 PRO

LEU163
ASN66
TYR159
P5 VAL

VAL152
GLN155
LEU156
TYR159
P6 THR

VAL152
THR73
P7 LYS

TRP133
LEU156
TYR74
SER116
TRP147
VAL152
ASN77
ASP114
THR73
P8 SER

THR143
LYS146
TRP147
ASN77
THR73
P9 PHE

THR143
TRP147
LYS146
ALA81
ILE142
ASN77
TYR74
SER116
ILE80
TYR84
TYR123
ILE95

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
LEU163
TRP167
TYR171
MET5
TYR59
GLU63
ASN66
TYR7
B Pocket

ALA24
VAL34
MET45
GLU63
ASN66
MET67
TYR7
SER70
TYR9
TYR99
C Pocket

SER70
THR73
TYR74
TYR9
VAL97
D Pocket

ASP114
GLN155
LEU156
TYR159
LEU160
TYR99
E Pocket

ASP114
TRP147
VAL152
LEU156
VAL97
F Pocket

SER116
TYR123
THR143
LYS146
TRP147
ASN77
ILE80
ALA81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW
        70        80        90
SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-B*57:01
IPD-IMGT/HLA
[ipd-imgt:HLA34051]
        10        20        30        40        50        60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRMAPRAPWIEQEGPEYW
        70        80        90       100       110       120
DGETRNMKASAQTYRENLRIALRYYNQSEAGSHIIQVMYGCDVGPDGRLLRGHDQSAYDG
       130       140       150       160       170       180
KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGLCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWE

3. Peptide
LSSPVTKSF


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 2RFX assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 2RFX assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 2RFX assembly 1  
Peptide only [cif]
  1. 2RFX assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/2rfx

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes