Alpha This is a work in progress and may change. Your feedback is very welcome.
  


2FO4

H2-Kb binding "SAPDFRPL" at 2.70Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
H2-Kb
['A']
3. Peptide
SAPDFRPL
['P']

Species


Locus / Allele group


Publication

Enhanced major histocompatibility complex class I binding and immune responses through anchor modification of the non-canonical tumour-associated mucin 1-8 peptide.

Lazoura E, Lodding J, Farrugia W, Ramsland PA, Stevens J, Wilson IA, Pietersz GA, Apostolopoulos V
Immunology (2006) 119, 306-16 [doi:10.1111/j.1365-2567.2006.02434.x]  [pubmed:17067310

Designing peptide-based vaccines for therapeutic applications in cancer immunotherapy requires detailed knowledge of the interactions between the antigenic peptide and major histocompatibility complex (MHC) in addition to that between the peptide-MHC complex and the T-cell receptor. Past efforts to immunize with high-affinity tumour-associated antigenic peptides have not been very immunogenic, which may be attributed to the lack of T cells to these peptides, having been deleted during thymic development. For this reason, low-to-medium affinity non-canonical peptides represent more suitable candidates. However, in addition to the difficulty in identifying such antigens, peptide binding to MHC, and hence its ability to induce a strong immune response, is limited. Therefore, to enhance binding to MHC and improve immune responses, anchor modifications of non-canonical tumour-associated peptides would be advantageous. In this study, the non-canonical tumour-associated peptide from MUC1, MUC1-8 (SAPDTRPA), was modified at the MHC anchor residues to SAPDFRPL (MUC1-8-5F8L) and showed enhanced binding to H-2Kb and improved immune responses. Furthermore, the crystal structure of MUC1-8-5F8L in complex with H-2Kb was determined and it revealed that binding of the peptide to MHC is similar to that of the canonical peptide OVA8 (SIINFEKL).

Structure deposition and release

Deposited: 2006-01-12
Released: 2006-11-14
Revised: 2021-11-10

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Octamer (8 amino acids)

Sequence: SAPDFRPL

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 SER

TRP167
LEU5
TYR159
TYR59
ARG62
LYS66
TYR171
THR163
GLU63
TYR7
P2 ALA

TYR7
GLU24
GLU63
TYR45
TYR159
LYS66
P3 PRO

ASN70
TYR159
TYR7
LYS66
GLN114
SER99
LEU156
P4 ASP

LYS66
ASN70
ARG155
P5 PHE

GLU24
TYR22
GLN114
ARG155
SER99
VAL9
PHE74
TYR116
SER73
VAL97
ASN70
P6 ARG

TYR116
ARG155
SER73
ASP77
GLU152
TRP147
P7 PRO

ASP77
VAL76
SER73
TRP147
P8 LEU

ASP77
THR143
TYR84
TYR123
LYS146
LEU81
TYR116
THR80
TRP147

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
THR163
TRP167
TYR171
LEU5
TYR59
GLU63
LYS66
TYR7
B Pocket

GLU24
VAL34
TYR45
GLU63
LYS66
ALA67
TYR7
ASN70
VAL9
SER99
C Pocket

ASN70
SER73
PHE74
VAL9
VAL97
D Pocket

GLN114
ARG155
LEU156
TYR159
LEU160
SER99
E Pocket

GLN114
TRP147
GLU152
LEU156
VAL97
F Pocket

TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
IQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKDW
        70        80        90
SFYILAHTEFTPTETDTYACRVKHDSMAEPKTVYWDRDM

2. Class I alpha
H2-Kb
        10        20        30        40        50        60
GPHSLRYFVTAVSRPGLGEPRYMEVGYVDDTEFVRFDSDAENPRYEPRARWMEQEGPEYW
        70        80        90       100       110       120
ERETQKAKGNEQSFRVDLRTLLGYYNQSKGGSHTIQVISGCEVGSDGRLLRGYQQYAYDG
       130       140       150       160       170       180
CDYIALNEDLKTWTAADMAALITKHKWEQAGEAERLRAYLEGTCVEWLRRYLKNGNATLL
       190       200       210       220       230       240
RTDSPKAHVTHHSRPEDKVTLRCWALGFYPADITLTWQLNGEELIQDMELVETRPAGDGT
       250       260       270
FQKWASVVVPLGKEQYYTCHVYHQGLPEPLTLRW

3. Peptide
SAPDFRPL


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 2FO4 assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 2FO4 assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 2FO4 assembly 1  
Peptide only [cif]
  1. 2FO4 assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/2fo4

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes