Alpha This is a work in progress and may change. Your feedback is very welcome.
  


2CIK

HLA-B*35:01 binding "KPIVVLHGY" at 1.75Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-B*35:01
['A']
3. Peptide
KPIVVLHGY
['C']

Species


Locus / Allele group


Publication

The structure of the human allo-ligand HLA-B*3501 in complex with a cytochrome p450 peptide: steric hindrance influences TCR allo-recognition.

Hourigan CS, Harkiolaki M, Peterson NA, Bell JI, Jones EY, O'Callaghan CA
Eur. J. Immunol. (2006) 36, 3288-93 [doi:10.1002/eji.200636234]  [pubmed:17109469

Virus-specific T cell populations have been implicated in allo-recognition. The subdominant T cell receptor JL12 recognizes both HLA-B*0801 presenting the Epstein-Barr virus-derived peptide FLRGRAYGL and also HLA-B*3501 presenting the cytochrome p450 self peptide KPIVVLHGY. This cross-reactivity could promote the rejection of HLA-B*3501-positive cells in Epstein-Barr virus-exposed HLA-B*0801 recipients. LC13, the dominant TCR against the HLA-B*0801:FLRGRAYGL complex, fails to recognize HLA-B*3501:KPIVVLHGY. We report the 1.75-Angstrom resolution crystal structure of the human allo-ligand HLA-B*3501:KPIVVLHGY. Similarities between this structure and that of HLA-B*0801:FLRGRAYGL may facilitate cross-recognition by JL12. Moreover, the elevated peptide position in HLA-B*3501:KPIVVLHGY would provide steric hindrance to LC13, preventing it from interacting in the manner in which it interacts with HLA-B*0801:FLRGRAYGL. These findings are relevant to understanding the basis of T cell cross-reactivity in allo-recognition, optimal transplant donor-recipient matching and developing specific molecular inhibitors of allo-recognition.

Structure deposition and release

Deposited: 2006-03-22
Released: 2006-10-25
Revised: 2011-07-13

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: KPIVVLHGY

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 LYS

MET5
TYR59
TYR7
TRP167
PHE33
ARG62
TYR171
ASN63
TYR159
P2 PRO

PHE67
TYR9
ASN63
TYR99
TYR159
ILE66
TYR7
P3 ILE

LEU156
GLN155
TYR9
TYR99
TYR159
ILE66
P4 VAL

GLN155
ARG62
ILE66
P5 VAL

GLN65
THR69
THR73
ASN70
ILE66
P6 LEU

THR73
ASN70
VAL152
LEU156
ARG97
GLN155
P7 HIS

ALA150
THR73
VAL152
LYS146
TRP147
ARG97
P8 GLY

SER77
THR73
LYS146
TRP147
THR143
P9 TYR

TYR123
SER77
ILE124
TYR84
LYS146
TRP147
ILE95
ILE142
TYR74
THR143
GLN96
ARG97
ASN80
SER116
LEU81

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
LEU163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
B Pocket

ALA24
VAL34
THR45
ASN63
ILE66
PHE67
TYR7
ASN70
TYR9
TYR99
C Pocket

ASN70
THR73
TYR74
TYR9
ARG97
D Pocket

ASP114
GLN155
LEU156
TYR159
LEU160
TYR99
E Pocket

ASP114
TRP147
VAL152
LEU156
ARG97
F Pocket

SER116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW
        70        80        90
SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-B*35:01
IPD-IMGT/HLA
[ipd-imgt:HLA34423]
        10        20        30        40        50        60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRTEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DRNTQIFKTNTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDG
       130       140       150       160       170       180
KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGLCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP

3. Peptide
KPIVVLHGY


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 2CIK assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 2CIK assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 2CIK assembly 1  
Peptide only [cif]
  1. 2CIK assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/2cik

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes