HLA-B*35:01 binding "KPIVVLHGY" at 1.75Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*35:01
KPIVVLHGY
Species
Locus / Allele group
The structure of the human allo-ligand HLA-B*3501 in complex with a cytochrome p450 peptide: steric hindrance influences TCR allo-recognition.
Virus-specific T cell populations have been implicated in allo-recognition. The subdominant T cell receptor JL12 recognizes both HLA-B*0801 presenting the Epstein-Barr virus-derived peptide FLRGRAYGL and also HLA-B*3501 presenting the cytochrome p450 self peptide KPIVVLHGY. This cross-reactivity could promote the rejection of HLA-B*3501-positive cells in Epstein-Barr virus-exposed HLA-B*0801 recipients. LC13, the dominant TCR against the HLA-B*0801:FLRGRAYGL complex, fails to recognize HLA-B*3501:KPIVVLHGY. We report the 1.75-Angstrom resolution crystal structure of the human allo-ligand HLA-B*3501:KPIVVLHGY. Similarities between this structure and that of HLA-B*0801:FLRGRAYGL may facilitate cross-recognition by JL12. Moreover, the elevated peptide position in HLA-B*3501:KPIVVLHGY would provide steric hindrance to LC13, preventing it from interacting in the manner in which it interacts with HLA-B*0801:FLRGRAYGL. These findings are relevant to understanding the basis of T cell cross-reactivity in allo-recognition, optimal transplant donor-recipient matching and developing specific molecular inhibitors of allo-recognition.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
LYS
MET5
TYR59
TYR7
TRP167
PHE33
ARG62
TYR171
ASN63
TYR159
|
P2
PRO
PHE67
TYR9
ASN63
TYR99
TYR159
ILE66
TYR7
|
P3
ILE
LEU156
GLN155
TYR9
TYR99
TYR159
ILE66
|
P4
VAL
GLN155
ARG62
ILE66
|
P5
VAL
GLN65
THR69
THR73
ASN70
ILE66
|
P6
LEU
THR73
ASN70
VAL152
LEU156
ARG97
GLN155
|
P7
HIS
ALA150
THR73
VAL152
LYS146
TRP147
ARG97
|
P8
GLY
SER77
THR73
LYS146
TRP147
THR143
|
P9
TYR
TYR123
SER77
ILE124
TYR84
LYS146
TRP147
ILE95
ILE142
TYR74
THR143
GLN96
ARG97
ASN80
SER116
LEU81
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
LEU163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
|
B Pocket
ALA24
VAL34
THR45
ASN63
ILE66
PHE67
TYR7
ASN70
TYR9
TYR99
|
C Pocket
ASN70
THR73
TYR74
TYR9
ARG97
|
D Pocket
ASP114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
ASP114
TRP147
VAL152
LEU156
ARG97
|
F Pocket
SER116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
ILE95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*35:01
IPD-IMGT/HLA
[ipd-imgt:HLA34423] |
10 20 30 40 50 60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRTEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRNTQIFKTNTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGLCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
KPIVVLHGY
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.