HLA-B*27:05 binding "RRRWHRWRL" at 1.40Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*27:05
RRRWHRWRL
Species
Locus / Allele group
Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype.
An interesting property of certain peptides presented by major histocompatibility complex (MHC) molecules is their acquisition of a dual binding mode within the peptide binding groove. Using x-ray crystallography at 1.4 A resolution, we show here that the glucagon receptor-derived self-peptide pGR ((412)RRRWHRWRL(420)) is presented by the disease-associated human MHC class I subtype HLA-B*2705 in a dual conformation as well, with the middle of the peptide bent toward the floor of the peptide binding groove of the molecule in both binding modes. The conformations of pGR are compared here with those of another self-peptide (pVIPR, RRKWRRWHL) that is also displayed in two binding modes by HLA-B*2705 antigens and with that of the viral peptide pLMP2 (RRRWRRLTV). Conserved structural features suggest that the N-terminal halves of the peptides are crucial in allowing cytotoxic T lymphocyte (CTL) cross-reactivity. In addition, an analysis of T cell receptors (TCRs) from pGR- or pVIPR-directed, HLA-B27-restricted CTL clones demonstrates that TCR from distinct clones but with comparable reactivity may share CDR3alpha but not CDR3beta regions. Therefore, the cross-reactivity of these CTLs depends on TCR-CDR3alpha, is modulated by TCR-CDR3beta sequences, and is ultimately a consequence of the conformational dimorphism that characterizes binding of the self-peptides to HLA-B*2705. These results lend support to the concept that conformational dimorphisms of MHC class I-bound peptides might be connected with the occurrence of self-reactive CTL.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ARG
TYR171
TYR7
GLU163
MET5
TYR159
TYR59
GLU63
TRP167
ARG62
|
P2
ARG
CYS67
VAL34
TYR7
GLY26
VAL25
HIS9
ARG62
GLU163
TYR99
THR24
TYR159
GLU63
ILE66
GLU45
|
P3
ARG
ARG62
LEU156
TYR99
TYR159
ILE66
HIS114
|
P4
TRP
GLN65
ALA69
ARG62
ILE66
|
P5
HIS
THR73
HIS114
TRP147
ASP77
LYS70
|
P7
TRP
LEU156
TRP147
ALA150
ASP77
VAL152
GLN155
THR73
|
P8
ARG
ASP77
GLU76
THR143
THR73
LYS146
TRP147
|
P9
LEU
TYR123
THR80
LEU81
TRP147
ASP77
ILE124
ASP116
TYR84
THR143
LEU95
ILE142
LYS146
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
GLU163
TRP167
TYR171
MET5
TYR59
GLU63
ILE66
TYR7
|
B Pocket
THR24
VAL34
GLU45
GLU63
ILE66
CYS67
TYR7
LYS70
HIS9
TYR99
|
C Pocket
LYS70
THR73
ASP74
HIS9
ASN97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ASN97
|
F Pocket
ASP116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*27:05
IPD-IMGT/HLA
[ipd-imgt:HLA34811] |
10 20 30 40 50 60
GSHSMRYFHTSVSRPGRGEPRFITVGYVDDTLFVRFDSDAASPREEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRETQICKAKAQTDREDLRTLLRYYNQSEAGSHTLQNMYGCDVGPDGRLLRGYHQDAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGECVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
RRRWHRWRL
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.