HLA-A*11:01 binding "KTFPPTEPK" at 1.45Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-A*11:01
KTFPPTEPK
Species
Locus / Allele group
High-resolution structure of HLA-A*1101 in complex with SARS nucleocapsid peptide.
The structure of the human MHC-I molecule HLA-A*1101 in complex with a nonameric peptide (KTFPPTEPK) has been determined by X-ray crystallography to 1.45 A resolution. The peptide is derived from the SARS-CoV nucleocapsid protein positions 362-370 (SNP362-370). It is conserved in all known isolates of SARS-CoV and has been verified by in vitro peptide-binding studies to be a good to intermediate binder to HLA-A*0301 and HLA-A*1101, with IC50 values of 70 and 186 nM, respectively [Sylvester-Hvid et al. (2004), Tissue Antigens, 63, 395-400]. In terms of the residues lining the peptide-binding groove, the HLA-A*1101-SNP362-370 complex is very similar to other known structures of HLA-A*1101 and HLA-A*6801. The SNP362-370 peptide is held in place by 17 hydrogen bonds to the alpha-chain residues and by nine water molecules which are also tightly bound in the peptide-binding groove. Thr6 of the peptide (Thr6p) does not make efficient use of the middle (E) pocket. For vaccine development, there seems to be a potential for optimization targeted at this position. All residues except Thr2p and Lys9p are accessible for T-cell recognition.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
LYS
TYR171
TRP167
PHE33
TYR159
TYR7
GLN62
GLU58
TYR59
ARG163
GLU63
MET5
|
P2
THR
TYR159
TYR9
ASN66
ARG163
MET45
TYR7
GLU63
VAL67
TYR99
|
P3
PHE
TYR99
TYR159
TYR9
ASN66
GLN70
ARG163
GLN156
ARG114
GLN155
|
P4
PRO
ASN66
ARG163
GLN70
|
P5
PRO
ASN66
GLN70
ALA69
THR73
|
P6
THR
GLN156
ARG114
THR73
ALA152
GLN70
TRP147
|
P7
GLU
ASP77
ALA152
TRP147
ALA150
LYS146
THR73
|
P8
PRO
LYS146
THR73
TRP147
ASP77
|
P9
LYS
TRP147
THR143
ASP77
ILE124
THR80
LEU81
ILE95
ILE142
LYS146
TYR84
TYR123
ARG114
ILE97
ASP116
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
ARG163
TRP167
TYR171
MET5
TYR59
GLU63
ASN66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
ASN66
VAL67
TYR7
GLN70
TYR9
TYR99
|
C Pocket
GLN70
THR73
ASP74
TYR9
ILE97
|
D Pocket
ARG114
GLN155
GLN156
TYR159
LEU160
TYR99
|
E Pocket
ARG114
TRP147
ALA152
GLN156
ILE97
|
F Pocket
ASP116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
ILE95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*11:01
IPD-IMGT/HLA
[ipd-imgt:HLA34732] |
10 20 30 40 50 60
GSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DQETRNVKAQSQTDRVDLGTLRGYYNQSEDGSHTIQIMYGCDVGPDGRFLRGYRQDAYDG 130 140 150 160 170 180 KDYIALNEDLRSWTAADMAAQITKRKWEAAHAAEQQRAYLEGRCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWE |
3. Peptide
|
KTFPPTEPK
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.