Alpha This is a work in progress and may change. Your feedback is very welcome.
  


1WBZ

H2-Kb binding "SSYRRPVGI" at 2.00Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B', 'D']
2. Class I alpha
H2-Kb
['A', 'C']
3. Peptide
SSYRRPVGI
['P', 'Q']

Species


Locus / Allele group


Publication

Crystal structures of murine MHC Class I H-2 D(b) and K(b) molecules in complex with CTL epitopes from influenza A virus: implications for TCR repertoire selection and immunodominance.

Meijers R, Lai CC, Yang Y, Liu JH, Zhong W, Wang JH, Reinherz EL
J. Mol. Biol. (2005) 345, 1099-110 [doi:10.1016/j.jmb.2004.11.023]  [pubmed:15644207

Cytotoxic T lymphocyte (CTL) responses against influenza A virus in C57BL/6 mice are dominated by a small number of viral peptides among many that are capable of binding to major histocompatibility complex (MHC) class I molecules. The basis of this limited immune recognition is unknown. Here, we present X-ray structures of MHC class I molecules in complex with two immunodominant epitopes (PA(224-233)/D(b) and PB1(703-711)/K(b)) and one non-immunogenic epitope (HA(468-477)/D(b)) of the influenza A virus. The immunodominant peptides are each characterized by a bulge at the C terminus, lifting P6 and P7 residues out of the MHC groove, presenting featured structural elements to T-cell receptors (TCRs). Immune recognition of PA(224-233)/D(b) will focus largely on the exposed P7 arginine residue. In contrast, the non-immunogenic HA(468-477) peptide lacks prominent features in this C-terminal bulge. In the K(b)-bound PB1(703-711) epitope, the bulge results from a non-canonical binding motif, such that the mode of presentation of this peptide strongly resembles that of D(b)-bound peptides. Given that PA(224-233)/D(b), PB1(703-711)/K(b) and the previously defined NP(366-374)/D(b) epitopes dominate the primary response to influenza A virus in C57BL/6 mice, our findings indicate that residues of the C-terminal bulge are important in selection of the immunodominant CTL repertoire.

Structure deposition and release

Deposited: 2004-11-05
Released: 2005-01-19
Revised: 2011-07-13

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: SSYRRPVGI

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 SER

TYR171
ARG62
TYR159
TYR7
THR163
TYR59
GLU63
LYS66
LEU5
TRP167
P2 SER

ASN70
GLU24
GLU63
LYS66
TYR45
TYR159
TYR7
P3 TYR

ARG155
LYS66
GLN114
GLU152
LEU156
ASN70
SER99
TYR159
P4 ARG

GLY69
SER73
GLN65
LYS66
ASN70
P5 ARG

TRP147
GLU152
ASN70
ASP77
PHE74
SER73
TYR116
P6 PRO

ARG155
GLU152
P7 VAL

ALA150
GLU152
LYS146
TRP147
ARG155
P8 GLY

TRP147
ASP77
THR143
LYS146
P9 ILE

LYS146
TYR84
TYR123
ILE95
LEU81
THR80
TRP147
TYR116
ASP77
THR143

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
THR163
TRP167
TYR171
LEU5
TYR59
GLU63
LYS66
TYR7
B Pocket

GLU24
VAL34
TYR45
GLU63
LYS66
ALA67
TYR7
ASN70
VAL9
SER99
C Pocket

ASN70
SER73
PHE74
VAL9
VAL97
D Pocket

GLN114
ARG155
LEU156
TYR159
LEU160
SER99
E Pocket

GLN114
TRP147
GLU152
LEU156
VAL97
F Pocket

TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
IQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKDW
        70        80        90
SFYILAHTEFTPTETDTYACRVKHDSMAEPKTVYWDRDM

2. Class I alpha
H2-Kb
        10        20        30        40        50        60
GPHSLRYFVTAVSRPGLGEPRYMEVGYVDDTEFVRFDSDAENPRYEPRARWMEQEGPEYW
        70        80        90       100       110       120
ERETQKAKGNEQSFRVDLRTLLGYYNQSKGGSHTIQVISGCEVGSDGRLLRGYQQYAYDG
       130       140       150       160       170       180
CDYIALNEDLKTWTAADMAALITKHKWEQAGEAERLRAYLEGTCVEWLRRYLKNGNATLL
       190       200       210       220       230       240
RTDSPKAHVTHHSRPEDKVTLRCWALGFYPADITLTWQLNGEELIQDMELVETRPAGDGT
       250       260       270
FQKWASVVVPLGKEQYYTCHVYHQGLPEPLTLRWE

3. Peptide
SSYRRPVGI


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 1WBZ assembly 1  
  2. 1WBZ assembly 2  

Components

MHC Class I alpha chain [cif]
  1. 1WBZ assembly 1  
  2. 1WBZ assembly 2  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 1WBZ assembly 1  
  2. 1WBZ assembly 2  
Peptide only [cif]
  1. 1WBZ assembly 1  
  2. 1WBZ assembly 2  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/1wbz

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes