HLA-B*27:09 binding "RRRWRRLTV" at 1.71Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*27:09
RRRWRRLTV
Species
Locus / Allele group
Allele-dependent similarity between viral and self-peptide presentation by HLA-B27 subtypes.
Molecular mimicry is discussed as a possible mechanism that may contribute to the development of autoimmune diseases. It could also be involved in the differential association of the human major histocompatibility subtypes HLA-B(*)2705 and HLA-B(*)2709 with ankylosing spondylitis. These two subtypes differ only in residue 116 of the heavy chain (Asp in B(*)2705 and His in B(*)2709), but the reason for the differential disease association is not understood. Using x-ray crystallography, we show here that the viral peptide pLMP2 (RRRWRRLTV, derived from latent membrane protein 2 (residues 236-244) of Epstein-Barr virus) is presented by the B(*)2705 and B(*)2709 molecules in two drastically deviating conformations. Extensive structural similarity between pLMP2 and the self-peptide pVIPR (RRKWRRWHL, derived from vasoactive intestinal peptide type 1 receptor (residues 400-408)) is observed only when the peptides are presented by B(*)2705 because of a salt bridge between Arg(5) of both peptides and the subtype-specific heavy chain residue Asp(116). Combined with functional studies using pLMP2/pVIPR-cross-reactive cytotoxic T cell lines and clones, together with target cells presenting these peptides or a modified peptide analogue, our results reveal that a pathogen-derived peptide can exhibit major histocompatibility complex class I subtype-dependent, drastically distinct binding modes. Furthermore, the results demonstrate that molecular mimicry between pLMP2 and pVIPR in the HLA-B27 context is an allele-dependent property.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ARG
MET5
ARG62
TYR7
GLU63
GLU163
TRP167
TYR171
TYR159
TYR59
|
P2
ARG
GLY26
GLU63
GLU163
CYS67
TYR159
HIS9
ARG62
VAL25
VAL34
ILE66
GLU45
TYR7
TYR99
THR24
|
P3
ARG
ILE66
HIS114
VAL152
LEU156
GLN155
TYR159
TYR99
|
P4
TRP
GLN65
ARG62
ILE66
|
P5
ARG
GLN155
|
P6
ARG
ALA69
THR73
GLN72
|
P7
LEU
ASP77
THR73
TRP147
VAL152
LYS70
HIS116
HIS114
|
P8
THR
LYS146
ASP77
THR73
TRP147
GLU76
|
P9
VAL
LYS146
ASP77
THR143
LEU81
HIS116
TRP147
THR80
TYR84
TYR123
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
GLU163
TRP167
TYR171
MET5
TYR59
GLU63
ILE66
TYR7
|
B Pocket
THR24
VAL34
GLU45
GLU63
ILE66
CYS67
TYR7
LYS70
HIS9
TYR99
|
C Pocket
LYS70
THR73
ASP74
HIS9
ASN97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ASN97
|
F Pocket
HIS116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*27:09
IPD-IMGT/HLA
[ipd-imgt:HLA00230] |
10 20 30 40 50 60
GSHSMRYFHTSVSRPGRGEPRFITVGYVDDTLFVRFDSDAASPREEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRETQICKAKAQTDREDLRTLLRYYNQSEAGSHTLQNMYGCDVGPDGRLLRGYHQHAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGECVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
RRRWRRLTV
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.