Alpha This is a work in progress and may change. Your feedback is very welcome.
  


1SYV

HLA-B*44:05 binding "EEFGRAFSF" at 1.70Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-B*44:05
['A']
3. Peptide
EEFGRAFSF
['C']

Species


Locus / Allele group


Publication

Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion.

Zernich D, Purcell AW, Macdonald WA, Kjer-Nielsen L, Ely LK, Laham N, Crockford T, Mifsud NA, Bharadwaj M, Chang L, Tait BD, Holdsworth R, Brooks AG, Bottomley SP, Beddoe T, Peh CA, Rossjohn J, McCluskey J
J. Exp. Med. (2004) 200, 13-24 [doi:10.1084/jem.20031680]  [pubmed:15226359

HLA class I polymorphism creates diversity in epitope specificity and T cell repertoire. We show that HLA polymorphism also controls the choice of Ag presentation pathway. A single amino acid polymorphism that distinguishes HLA-B*4402 (Asp116) from B*4405 (Tyr116) permits B*4405 to constitutively acquire peptides without any detectable incorporation into the transporter associated with Ag presentation (TAP)-associated peptide loading complex even under conditions of extreme peptide starvation. This mode of peptide capture is less susceptible to viral interference than the conventional loading pathway used by HLA-B*4402 that involves assembly of class I molecules within the peptide loading complex. Thus, B*4402 and B*4405 are at opposite extremes of a natural spectrum in HLA class I dependence on the PLC for Ag presentation. These findings unveil a new layer of MHC polymorphism that affects the generic pathway of Ag loading, revealing an unsuspected evolutionary trade-off in selection for optimal HLA class I loading versus effective pathogen evasion.

Structure deposition and release

Deposited: 2004-04-02
Released: 2004-10-19
Revised: 2011-07-13

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: EEFGRAFSF

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 GLU

TYR59
TYR7
ARG170
TYR171
LEU163
CYS164
ARG62
GLU63
MET5
SER167
TYR159
P2 GLU

GLU63
ILE66
TYR159
LYS45
SER67
TYR9
TYR99
TYR7
LEU163
ASN70
THR24
P3 PHE

ILE66
GLN155
TYR99
ASP156
TYR159
ARG97
TYR9
P4 GLY

ILE66
P5 ARG

GLN155
ARG97
P6 ALA

THR73
ASN70
P7 PHE

VAL152
GLN155
ASP156
TRP147
ASN77
P8 SER

TRP147
THR73
ASN77
THR143
LYS146
P9 PHE

THR143
TYR123
ILE95
ILE142
LYS146
TYR74
THR80
TYR116
TRP147
ASN77
TYR84

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
LEU163
SER167
TYR171
MET5
TYR59
GLU63
ILE66
TYR7
B Pocket

THR24
VAL34
LYS45
GLU63
ILE66
SER67
TYR7
ASN70
TYR9
TYR99
C Pocket

ASN70
THR73
TYR74
TYR9
ARG97
D Pocket

ASP114
GLN155
ASP156
TYR159
LEU160
TYR99
E Pocket

ASP114
TRP147
VAL152
ASP156
ARG97
F Pocket

TYR116
TYR123
THR143
LYS146
TRP147
ASN77
THR80
ALA81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-B*44:05
IPD-IMGT/HLA
[ipd-imgt:HLA30859]
        10        20        30        40        50        60
GSHSMRYFYTAMSRPGRGEPRFITVGYVDDTLFVRFDSDATSPRKEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DRETQISKTNTQTYRENLRTALRYYNQSEAGSHIIQRMYGCDVGPDGRLLRGYDQYAYDG
       130       140       150       160       170       180
KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQDRAYLEGLCVESLRRYLENGKETLQ
       190       200       210       220       230       240
RADPPKTHVTHHPISDHEVTLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP

3. Peptide
EEFGRAFSF


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 1SYV assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 1SYV assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 1SYV assembly 1  
Peptide only [cif]
  1. 1SYV assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/1syv

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes