HLA-B*44:05 binding "EEFGRAFSF" at 1.70Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*44:05
EEFGRAFSF
Species
Locus / Allele group
Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion.
HLA class I polymorphism creates diversity in epitope specificity and T cell repertoire. We show that HLA polymorphism also controls the choice of Ag presentation pathway. A single amino acid polymorphism that distinguishes HLA-B*4402 (Asp116) from B*4405 (Tyr116) permits B*4405 to constitutively acquire peptides without any detectable incorporation into the transporter associated with Ag presentation (TAP)-associated peptide loading complex even under conditions of extreme peptide starvation. This mode of peptide capture is less susceptible to viral interference than the conventional loading pathway used by HLA-B*4402 that involves assembly of class I molecules within the peptide loading complex. Thus, B*4402 and B*4405 are at opposite extremes of a natural spectrum in HLA class I dependence on the PLC for Ag presentation. These findings unveil a new layer of MHC polymorphism that affects the generic pathway of Ag loading, revealing an unsuspected evolutionary trade-off in selection for optimal HLA class I loading versus effective pathogen evasion.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
GLU
TYR59
TYR7
ARG170
TYR171
LEU163
CYS164
ARG62
GLU63
MET5
SER167
TYR159
|
P2
GLU
GLU63
ILE66
TYR159
LYS45
SER67
TYR9
TYR99
TYR7
LEU163
ASN70
THR24
|
P3
PHE
ILE66
GLN155
TYR99
ASP156
TYR159
ARG97
TYR9
|
P4
GLY
ILE66
|
P5
ARG
GLN155
ARG97
|
P6
ALA
THR73
ASN70
|
P7
PHE
VAL152
GLN155
ASP156
TRP147
ASN77
|
P8
SER
TRP147
THR73
ASN77
THR143
LYS146
|
P9
PHE
THR143
TYR123
ILE95
ILE142
LYS146
TYR74
THR80
TYR116
TRP147
ASN77
TYR84
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
LEU163
SER167
TYR171
MET5
TYR59
GLU63
ILE66
TYR7
|
B Pocket
THR24
VAL34
LYS45
GLU63
ILE66
SER67
TYR7
ASN70
TYR9
TYR99
|
C Pocket
ASN70
THR73
TYR74
TYR9
ARG97
|
D Pocket
ASP114
GLN155
ASP156
TYR159
LEU160
TYR99
|
E Pocket
ASP114
TRP147
VAL152
ASP156
ARG97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
ASN77
THR80
ALA81
TYR84
ILE95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*44:05
IPD-IMGT/HLA
[ipd-imgt:HLA30859] |
10 20 30 40 50 60
GSHSMRYFYTAMSRPGRGEPRFITVGYVDDTLFVRFDSDATSPRKEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRETQISKTNTQTYRENLRTALRYYNQSEAGSHIIQRMYGCDVGPDGRLLRGYDQYAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQDRAYLEGLCVESLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPISDHEVTLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
EEFGRAFSF
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.