H2-Db binding "FAPSNYPAL" at 2.65Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
H2-Db
FAPSNYPAL
Species
Locus / Allele group
Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity.
Two synthetic O-GlcNAc-bearing peptides that elicit H-2Db-restricted glycopeptide-specific cytotoxic T cells (CTL) have been shown to display nonreciprocal patterns of cross-reactivity. Here, we present the crystal structures of the H-2Db glycopeptide complexes to 2.85 A resolution or better. In both cases, the glycan is solvent exposed and available for direct recognition by the T cell receptor (TCR). We have modeled the complex formed between the MHC-glycopeptide complexes and their respective TCRs, showing that a single saccharide residue can be accommodated in the standard TCR-MHC geometry. The models also reveal a possible molecular basis for the observed cross-reactivity patterns of the CTL clones, which appear to be influenced by the length of the CDR3 loop and the nature of the immunizing ligand.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
PHE
PHE33
GLU63
MET5
TYR159
LYS66
TRP167
TYR171
TYR59
TYR7
GLU163
|
P2
ALA
GLU63
TYR45
TYR159
TYR7
LYS66
|
P3
PRO
LYS66
GLN97
GLN70
GLU9
TYR7
SER99
TYR159
|
P4
SER
TYR156
GLN70
LYS66
|
P5
ASN
GLN70
PHE116
TYR156
PHE74
TRP73
GLN97
|
P6
TYR
TYR156
HIS155
TRP73
ALA152
|
P7
PRO
TYR156
SER150
TRP147
TRP73
ALA152
|
P8
ALA
SER77
VAL76
LYS146
TRP147
TRP73
ASN80
|
P9
LEU
PHE116
SER77
THR143
TYR123
LEU95
LYS146
ILE124
TRP73
ASN80
TYR84
LEU81
TRP147
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
GLU163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
SER24
VAL34
TYR45
GLU63
LYS66
ALA67
TYR7
GLN70
GLU9
SER99
|
C Pocket
GLN70
TRP73
PHE74
GLU9
GLN97
|
D Pocket
LEU114
HIS155
TYR156
TYR159
LEU160
SER99
|
E Pocket
LEU114
TRP147
ALA152
TYR156
GLN97
|
F Pocket
PHE116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW 70 80 90 SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
H2-Db
|
10 20 30 40 50 60
GPHSMRYFETAVSRPGLEEPRYISVGYVDNKEFVRFDSDAENPRYEPRAPWMEQEGPEYW 70 80 90 100 110 120 ERETQKAKGQEQWFRVSLRNLLGYYNQSAGGSHTLQQMSGCDLGSDWRLLRGYLQFAYEG 130 140 150 160 170 180 RDYIALNEDLKTWTAADMAAQITRRKWEQSGAAEHYKAYLEGECVEWLHRYLKNGNATLL 190 200 210 220 230 240 RTDSPKAHVTHHPRSKGEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDGT 250 260 270 FQKWASVVVPLGKEQNYTCRVYHEGLPEPLTLRWEP |
3. Peptide
|
FAPSNYPAL
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.