HLA-B*27:05 binding "RRKWRRWHL" at 1.47Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-B*27:05
RRKWRRWHL
Species
Locus / Allele group
Dual, HLA-B27 subtype-dependent conformation of a self-peptide.
The products of the human leukocyte antigen subtypes HLA-B*2705 and HLA-B*2709 differ only in residue 116 (Asp vs. His) within the peptide binding groove but are differentially associated with the autoimmune disease ankylosing spondylitis (AS); HLA-B*2705 occurs in AS-patients, whereas HLA-B*2709 does not. The subtypes also generate differential T cell repertoires as exemplified by distinct T cell responses against the self-peptide pVIPR (RRKWRRWHL). The crystal structures described here show that pVIPR binds in an unprecedented dual conformation only to HLA-B*2705 molecules. In one binding mode, peptide pArg5 forms a salt bridge to Asp116, connected with drastically different interactions between peptide and heavy chain, contrasting with the second, conventional conformation, which is exclusively found in the case of B*2709. These subtype-dependent differences in pVIPR binding link the emergence of dissimilar T cell repertoires in individuals with HLA-B*2705 or HLA-B*2709 to the buried Asp116/His116 polymorphism and provide novel insights into peptide presentation by major histocompatibility antigens.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
ARG
GLU163
GLU63
MET5
TYR171
TYR7
TYR159
TRP167
TYR59
ARG62
|
P2
ARG
ILE66
CYS67
GLU45
ARG62
GLU163
GLU63
VAL34
TYR7
HIS9
TYR99
THR24
TYR159
GLY26
VAL25
|
P3
LYS
TYR99
TYR159
ILE66
LEU156
HIS114
ARG62
|
P4
TRP
ILE66
ARG62
GLN65
|
P5
ARG
GLN155
|
P6
ARG
CYS67
LYS70
THR73
ILE66
ALA69
|
P7
TRP
VAL152
GLN155
LEU156
ALA150
TRP147
ASP77
THR73
|
P8
HIS
LYS146
TRP147
ASP77
GLU76
THR73
THR143
|
P9
LEU
THR143
ASP116
TYR123
ASP77
THR80
LYS146
TRP147
ILE142
ILE124
TYR84
LEU81
LEU95
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
GLU163
TRP167
TYR171
MET5
TYR59
GLU63
ILE66
TYR7
|
B Pocket
THR24
VAL34
GLU45
GLU63
ILE66
CYS67
TYR7
LYS70
HIS9
TYR99
|
C Pocket
LYS70
THR73
ASP74
HIS9
ASN97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ASN97
|
F Pocket
ASP116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-B*27:05
IPD-IMGT/HLA
[ipd-imgt:HLA34811] |
10 20 30 40 50 60
GSHSMRYFHTSVSRPGRGEPRFITVGYVDDTLFVRFDSDAASPREEPRAPWIEQEGPEYW 70 80 90 100 110 120 DRETQICKAKAQTDREDLRTLLRYYNQSEAGSHTLQNMYGCDVGPDGRLLRGYHQDAYDG 130 140 150 160 170 180 KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGECVEWLRRYLENGKETLQ 190 200 210 220 230 240 RADPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT 250 260 270 FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
RRKWRRWHL
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.